
Chapter 5

Inverse Kinematics for Position

The problem of inverse kinematics is to find the joint angles, given the end effector position and orientation.
In general, inverse kinematics is much harder than forward kinematics. Sometimes no analytical solution
is possible, and an iterative search is required. Even with analytical solutions possible, multiple solutions
arise from which one must pick. In the case of redundant manipulators, there are infinitely many solutions
from which to choose. Another complication is that workspace limits may be violated (the point is outside
the reach of the manipulator, or joint limits are exceeded).

5.1 Two-link Planar Manipulator

The simplest non-trivial manipulator for which to study inverse kinematics is the planar two-link manipu-
lator (Figure 5.1). Moreover, parts of some spatial manipulators have this structure as a subchain, and the
following solution applies to the analysis of those manipulators’ inverse kinematics as we shall see later.

First solve for �2 using Figure 5.1(A). From the cosine rule,

x2 + y2 = a2
1
+ a2

2
� 2a1a2 cos(� � �2)

cos �2 =
x2 + y2 � a2

1
� a2

2

2a1a2
(5.1)

As usual, we should try to avoid using the arccos function because of inaccuracy. Instead, the following
half-angle formula is employed:

tan
2
�2

2
=

1� cos �2

1 + cos �2
=

2a1a2 � x2 � y2 + a2
1
+ a2

2

2a1a2 + x2 + y2 � a2
1
� a2

2

=
(a1 + a2)

2
� (x2 + y2)

(x2 + y2)� (a1 � a2)2
(5.2)

The second joint angle �2 is then found accurately as:

�2 = �2 tan
�1

s
(a1 + a2)2 � (x2 + y2)

(x2 + y2)� (a1 � a2)2
(5.3)

Because of the square root, two solutions result: elbow up and elbow down (Figure 5.1). We pick one of the
two solutions to proceed.

Next we will find �1, which is determined uniquely given �2. From Figure 5.1 we get the relation:

�1 = ��  (5.4)
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Figure 5.1: Inverse kinematics for two-link planar manipulator. Elbow down (A) and elbow up (B) solutions.

where � is the angle between the radial line to the endpoint and the x axis, and  is the angle between link
1 and the radial line. These two angles are found uniquely from

� = atan2(y; x) (5.5)

 = atan2(a2 sin �2; a1 + a2 cos �2) (5.6)

Note the two different solutions for �1 corresponding to the elbow-down versus elbow-up configurations
(Figure 5.1).

5.1.1 Alternate Solution

Two arctangent functions are involved to find �1 in (5.4). There is an alternate solution based on Gaussian
elimination that requires only one arctangent evaluation, which may be more efficient on a computer. The
forward kinematics can be written by inspection or by referring to Chapter 2:

x = a1c�1 + a2c(�1 + �2) (5.7)

y = a1s�1 + a2s(�1 + �2) (5.8)

Take two different linear combinations of these equations to produce after simplification:

xc�1 + ys�1 = a1 + a2c�2 (5.9)

xs�1 � yc�1 = �a2s�2 (5.10)

There are now two equations to solve for s�1 and c�1 separately using Gaussian elimination.

c�1 =
x(a1 + a2c�2) + y(a2s�2)

x2 + y2
(5.11)

s�1 =
y(a1 + a2c�2)� x(a2s�2)

x2 + y2
(5.12)

The 4-quadrant arctangent is then applied only once to find �1.
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5.2 Spatial 3-DOF Manipulators

Manipulators can often be considered to be composed of two parts. The first 3 joints form a regional structure
whose primary purpose is to position the wrist in space. The last 3 joints form the orienting structure whose
purpose is to orient the hand or grasped object. In this section, we will solve the inverse kinematics of the
first three degrees of freedom of the elbow robot of the previous chapter, assuming that the wrist position is
given. A planar two-link manipulator often makes up the last two links of the regional structure, and it will
be seen that the solution of the previous section can be directly applied.
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Figure 5.2: First four joints of the elbow robot.

5.2.1 The Elbow Robot Regional Structure

The DH parameters for the first 4 links are shown in Figure 5.2. The link 4 parameters have been included
in the regional structure because they locate the wrist point O4, which we assume is known relative to O0,
i.e., 0d04 = O4�O0. Although z3 and z4 are rotation axes, they have no influence on the wrist position O4
because they pass through that point. For the purposes of this section, they can be considered inactive.

Project the position of the wrist point into the x0; y0 plane, i.e., just select the x; y coordinates of 0d04
(Figure 5.3(A)). The radial line from O0 to this projected point is parallel to x1. Hence the angle between
this radial line and x0 is �1:

�1 = tan�1

 
0d04y
0d04x

!
(5.13)

Because of the arctangent function, there are two possible solutions for �1. These correspond to “lefty” and
“righty” configurations: starting from one of these configurations, the base rotates 180 degrees while the
upper arm rotates over the top to achieve the same wrist position. In Figure 5.3(A), this corresponds to the
x1 axis pointing in the other direction; the two �1 solutions differ by �. For manipulators such as the PUMA
which have an offset in the shoulder, the result is the left versus right arm look; this case is treated below.

Next, find the vector 1d14 from coordinate origin 1 to the wrist. We can express the result with respect
to the orientation of frame 1 because we now know �1.

1d14 =
1d04 �

1d01 =
0RT

1 (
0d04 �

0d01) (5.14)
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Figure 5.3: (A) Solution for �1. (B) Solution for �2 and �3.

where

0R1 =

2
64 c�1 �s�1c�1 s�1s�1

s�1 c�1c�1 �c�1s�1
0 s�1 c�1

3
75 =

2
64 c�1 0 s�1

s�1 0 �c�1
0 1 0

3
75 (5.15)

since �1 = �=2. Hence

1d14 =

2
64 c�1 s�1 0

0 0 1

s�1 �c�1 0

3
75
0
B@
2
64

0d04x
0d04y
0d04z

3
75� d1

2
64 0

0

1

3
75
1
CA =

2
6664

0d04xc�1 + 0d04ys�1
0d04z � d1

0d04xs�1 � 0d04yc�1

3
7775 (5.16)

The upper arm and forearm lie in the x1;y1 plane. Hence we may apply the results for the inverse
kinematics of a planar 2-link manipulator. The only difference is that there is an extra angle �=2 in addition
to �3 to locate the forearm (Figure 5.3(B)). Define a new joint angle �0

3
= �3 + �=2. Then �2; �03 exactly

correspond to �1; �2 of the previous section, while the first two components of 1d14 correspond to x; y.
Hence apply either solution from section 5.1 to find �2 and �0

3
, and then �3.

5.2.2 An Elbow Robot with a Shoulder

As mentioned above, some robots appear to have a shoulder, in that the plane of the upper arm and forearm
does not intersect the first rotation axis. The robot of Figure 5.4 is derived from the previous robot by adding
an offset d2, which makes it look like a left arm. From a workspace standpoint, the advantage is that the
upper arm will not hit the base when it is straight down.

The shoulder offset makes the calculation of �1 more complex, because the x1 axis is no longer in the
vertical plane of the upper arm and forearm (Figure 5.5(A)). When x1 and the wrist point are projected onto
the x0;y0 plane, then the angle �1 from x0 to x1 is no longer the same as the angle from x0 to the projected
wrist point. The projection on the x0;y0 plane is redrawn in Figure 5.5(B) for clarity. Suppose the wrist
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Figure 5.4: First four joints of the shoulder-elbow robot.

point is (x; y), � is the angle to the radial line of length r =
p
x2 + y2 to the wrist point, and  is as shown.

Then
�1 = �+ (�=2 �  ) (5.17)

where

� = atan2(y; x) (5.18)

cos = d2=r (5.19)

Similar to (5.2), we compute  from

tan2
 

2
=

1� cos 

1 + cos 
=
r � d2

r + d2
(5.20)

There are two solutions for  and hence for �1, which more transparently correspond to “lefty” and “righty.”
To find �2 and �3, we again reduce the problem to that of the planar two-link manipulator by finding the

wrist position relative to the shoulder:

1d14 =
0RT

1

�
0d04 � d1

0z0

�
(5.21)

Choose the (x; y) components of 1d14 to solve for �2; �3 as in the previous section. The shoulder offset d2,
which is along the z1 axis, does not affect these components.

5.3 Spherical Manipulator

The spherical wrist on manipulators primarily serves to orient the last link. When considered by itself, a
spherical wrist is called a spherical manipulator or mechanism. Consider again the spherical joint from the
previous chapter (Figure 5.6). The numbering of the first joint begins with 4, because as will be seen later
the inverse kinematics of the 6 degree-of-freedom elbow robot can be obtained merely by juxtaposing the
solutions for the spatial 3R manipulatr and the spherical manipulator.
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Figure 5.5: (A) A shoulder causes the upper arm/forearm vertical plane not to intersect the origin O0. (B)
Projection of the arm and shoulder onto the x0;y0 plane.

Suppose that the orientation 3R6 of frame 6 relative to frame 3 is given, and we have to find the three
joint angles �4; �5; �6 to generate 3R6. The offset d4 of the wrist relative to O3 does not influence this
orientation problem. The solution is more elaborate and less intuitive than the positioning problem for
the spatial 3R manipulator, and proceeds through matrix manipulation and simultaneous equations. For
simplicity, let rij represent an element of matrix 3R6. From the definition of 3R6,

3R6 = 3R4
4R5

5R6 (5.22)

Rather than multiply out the right side, a trick is to solve a simpler problem by solving for �4 from

3R6
5RT

6 =
3R4

4R5 (5.23)

This trick separates out �6, as can be seen when each side is expanded below.

3R4
4R5 =

2
64 c�4 0 s�4

s�4 0 �c�4
0 1 0

3
75
2
64 c�5 0 �s�5

s�5 0 c�5
0 �1 0

3
75 =

2
6664

...
... �c�4s�5

...
... �s�4s�5

...
... c�5

3
7775 (5.24)

where we only care about the last column. Then

3R6
5RT

6
=

2
64 r11 r12 r13
r21 r22 r23
r31 r32 r33

3
75
2
64 c�6 s�6 0

�s�6 c�6 0

0 0 1

3
75 =

2
6664

...
... r13

...
... r23

...
... r33

3
7775 (5.25)
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Figure 5.6: (A) Spherical joint in zero position. (B) Spherical joint after displacements in all angles.

where again we only care about the last column. Equating corresponding elements,

�4 = tan�1

�
�r23

�r13

�
= tan�1

�
s�4s�5
c�4s�5

�
(5.26)

There are two possible solutions for �4.
However, �5 and �6 are determined uniquely as evidenced by the use of the 4-quadrant artangent function

below. Again from the definition of 3R6,

(3R4)
T 3R6 = 4R5

5R6 (5.27)

where

4R5
5R6 =

2
64 c�5 0 �s�5

s�5 0 c�5
0 �1 0

3
75
2
64 c�6 �s�6 0

s�6 c�6 0

0 0 1

3
75 =

2
664

...
... �s�5

...
... c�5

�s�6 �c�6 0

3
775 (5.28)

RT
4R

6

3 =

2
64 c�4 s�4 0

0 0 1

s�4 �c�4 0

3
75
2
64 r11 r12 r13
r21 r22 r23
r31 r32 r33

3
75

=

2
664

...
... r13c�4 + r23s�4

...
... r33

r11s�4 � r21c�4 r12s�4 � r22c�4 r13s�4 � r23c�4

3
775 (5.29)

Hence equating corresponding elements,

s�5 = �r13c�4 � r23s�4
c�5 = r33 (5.30)
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�5 = atan2(s�5; c�5)

s�6 = �r11s�4 + r21c�4
c�6 = �r12s�4 + r22c�4 (5.31)

�6 = atan2(s�6; c�6)

When �5 = 0 in (5.26), there is a degeneracy called the wrist singularity. At this singularity, the z3
and z5 rotation axes align (Figure 5.6(A)), resulting in a loss of one degree of freedom. Only the linear
combination �4 + �6 can be found, a situation analogous to the Euler angle degeneracy.

5.4 Inverse Kinematics of 6-DOF Manipulators

In general, the inverse kinematics of arbitrary 6-DOF rotary manipulators cannot be solved analytically.
Under two special cases, however, an analytic solution is possible.

1. There is a spherical joint anywhere in the chain.

2. There is a planar pair anywhere in the chain.

These joints allow the manipulator to be broken into subsystems which are more easily solved.
The elbow manipulator has a spherical wrist, and hence its inverse kinematics may be solved analytically.

The DH parameters of the elbow manipulator are repeated in Figure 5.7, where the zero position is also
shown. The last frame 6 has been chosen to be coincident with frame 5 when �6 = 0.
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Figure 5.7: Zero position of elbow robot, and associated DH parameterization.

Suppose the robot is grasping an object, which has a tool frame 6Ttool relative to frame 6 (Figure
5.8(A)). Then the endpoint location is:

0Ttool =

2
4 0Rtool

0dtool

0T 1

3
5 =

0T1
1T2 � � �

5T6
6Ttool (5.32)
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The position 0dtool and orientation 0Rtool of the tool is somehow given to us, for example from a trajectory
planner. Our job is to find the joint angles that realize this tool pose. The solution to the inverse kinematics
proceeds by 3 steps.
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Figure 5.8: (A) Tool frame location relative to frame 6. (B) Inter-frame vectors.

5.4.1 Step 1: Decompose the Manipulator at the Wrist

This is the singly most important step of the procedure. The spherical wrist makes this possible. We find the
position of the wrist point, which subsequently is used to solve for the first 3 joint angles. The wrist joint
angles are then solved to give the correct orientation. Let the tool transform be given:

6Ttool =

2
4 6Rtool

6d6;tool

0T 1

3
5 (5.33)

Since 6d6;tool is the vector from the wrist to the tool frame origin, it also locates origins O4 and O5 which
are coincident with O6. Hence we express the distance from base to wrist as the vector from O0 to O4:

0d04 =
0 d0;tool �

0d6;tool =
0 d0;tool �

0Rtool(
6Rtool)

T 6d6;tool (5.34)

The various inter-frame translation vectors dij are shown in Figure 5.8(B).

5.4.2 Step 2: Find the First 3 Joint Angles

We can now simply apply the solution of Section 5.2.1 to find �1; �2; �3 given 0d04.

5.4.3 Step 3: Find the Last 3 Joint Angles

The first 3 joint angles impart a certain ortientation in space of the forearm. The wrist angles correct for the
difference between this orientation and the desired orientation of the end link.

0Rtool = (0R1
1R2

2R3)(
3R4

4R5
5R6)

6Rtool

3R6 = (0R3)
T 0Rtool

6RT
tool

(5.35)
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where the elements of 3R6 = frijg are now known. Simply apply the solution for the spherical manipulator
of Section 5.3 to find �4; �5; �6.

In total, there are 8 = 2� 2 � 2 solutions for the inverse kinematics for the 6R arm: 2 for the shoulder
(leftie/rightie), 2 for the elbow (up and down), and 2 for the wrist.

5.5 Workspace

Workspace is the set of configurations that a manipulator can assume. Workspace depends on the joint limits
and on the presence of obstacles. For the planar 2-link manipulator without joint limits, the workspace is a
hollow disk, regardless of the relative length of a1 versus a2 (Figure 5.9(A)). The outer boundary of the disk
has radius a1 + a2, while the inner boundary has radius ja1� a2j. For a given absolute difference ja1� a2j,
the inner boundary radius holds whether a1 < a2 or a1 > a2.

With joint limits (e.g., 0 < �1 < 90o and 0 < �2 < 180o), only a portion of this hollow disk can be
reached (Figure 5.9(B)).

Consider now a spatial 2-link manipulator, where z1 ? z0 and a1 > a2 (Figure 5.10). Rotation of the
endpoint about z1 generates a circle of radius a2. Rotation about axis z0 sweeps the circle to form a torus
(Figure 5.10(B)); only half of the torus is shown in the figure. The workspace of the endpoint lies on the
surface of the torus.

5.5.1 Holes and Voids

Consider a 3-link spatial manipulator formed by adding a link to the 2-link spatial manipulator above, so
that z2 k z3 and a3 6= 0 (Figure 5.11). Suppose a1 > a2+a3 and a2 > a3. Joints 2 and 3 are like the planar
2-link manipulator, and sweep out a hollow disk. Joint 1 sweeps the hollow disk to form a torus (Figure
5.11(B)).
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Figure 5.11: A spatial 3R manipulator (A) and its workspace (B).

The donut hole is called a hole. The empty space in the interior of the donut is called a void. Voids
are considered much worse than holes, because they are interior to the workspace and pose a difficult for
trajectory planning. Manipulator designers attempt to avoid voids by setting a2 = a3. The hole on the other
hand represents the workspace boundary, and there has to be a workspace boundary someplace.

The donut hole can be minimized by setting a1 = a2 + a3. Alternatively, if a1 = 0 and a2 = a3, then
the workspace is a perfect sphere. The manipulator in Figure 5.11(A) is the same as the first 3 joints of the
elbow robot. Commercial elbow robots are typically designed with these criteria to avoid holes and voids.

5.5.2 Total, Primary, and Secondary Workspace

So far, we have only considered position. Consider now the elbow manipulator, where we also have to
consider orientation of the end link as well as position of the endpoint. In Figure 5.12, we have depicted the
last three joints as a ball joint to suggest the spherical joint equivalent (Figure 5.12(A)). The length of the
end link from wrist to endpoint is d6.

The total or reachable workspace is the positioning workspace, without regard for orientation. Suppose
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Figure 5.12: Elbow robot with last three joints depicted as a ball joint.

a2 > d4 > d6 and a2 > d4 + d6. Then the reachable workspace is a hollow sphere with outer radius
a2 + d4 + d6 and inner radius a2 � d4 � d6, Figure 5.12(B) shows a cross-section of the workspace sphere
through its center; the total of all shaded areas represents the reachable workspace. The endpoint can achieve
all positions in these shaded areas.

The primary workspace comprises points reachable in all orientations. For the elbow manipulator, the
primary workspace has an outer radius a2 + d4 � d6 and an inner radius a2 � d4 + d6; in Figure 5.12(B)
the dark-shaded area represents the primary workspace. When the wrist point is located in the primary
workspace, any orientation of the end link may be achieved. Notice how small the primary workspace is.

The secondary workspace is the total workspace minus the primary workspace. The secondary workspace
comprises points that can be reached in only partial orientations. For the elbow manipulator, the secondary
workspace is a hollow sphere with outer radius a2 + d4 + d6 and inner radius a2 + d4 � d6 plus another
hollow sphere with outer radius a2�d4+d6 and inner radius a2�d4�d6. The light-shaded areas in Figure
5.12(B) depict the secondary workspace.


