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Non-Euclidean geometry is geometry that is not based on the

postulates of Euclidean geometry. The five postulates of Euclidean

geometry are:

1. Two points determine one line segment.

2. A line segment can be extended infinitely.

3. A center and radius determine a circle.

4. All right angles are congruent.

5. Given a line and a point not on the line, there exists exactly one

line containing the given point parallel to the given line.

The fifth postulate is sometimes called the parallel postulate. It

determines the curvature of the geometry’s space. If there is one line

parallel to the given line (like in Euclidean geometry), it has no curvature.

If there are at least two lines parallel to the given line, it has a negative

curvature. If there are no lines parallel to the given line, it has a positive

curvature. The most important non-Euclidean geometries are hyperbolic

geometry and spherical geometry.

Hyperbolic geometry is the geometry on a hyperbolic surface. A

hyperbolic surface has a negative curvature. Thus, the fifth postulate of

hyperbolic geometry is that there are at least two lines parallel to the

given line through the given point.
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Spherical geometry is the geometry on the surface of a sphere. The

five postulates of spherical geometry are:

1. Two points determine one line segment, unless the points are

antipodal (the endpoints of a diameter of the sphere), in which case

they determine an infinite number of line segments.

2. A line segment can be extended until its length equals the

circumference of the sphere.

3. A center and a radius with length less than or equal to πr where r

is the radius of the sphere determine a circle.

4. All right angles are congruent.

5. Given a line and a point not on the line, there are no lines through

the given point parallel to the given line.

A line segment on a sphere is the shortest distance between two points on

the sphere. This distance is the smaller section of arc formed by the two

points on a great circle. A great circle is a circle whose center is the

center of the sphere and whose radius is the radius of the sphere.

In spherical geometry, a triangle is the section of a sphere bounded

by the arcs of three great circles. There are two sections formed in this

way. One is the section whose interior angles each have a measure less

than 180°. The other is the section whose interior angles each have a
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measure greater than 180°. I will be working only with the first triangle,

and will regard it as the spherical triangle formed by the arcs of three

great circles. Also, each side must have a length less than or equal to half

the circumference of the sphere because otherwise the side would not fit

the definition of a line segment.

I will focus on the following problem: For a triangle ABC — where a,

b, and c are the lengths of the sides opposite angles A, B, and C,

respectively —, given a, b, and the measure of angle C, what is the

relationship between c where ∆ABC is in a Euclidean plane and c where

∆ABC is on the surface of a sphere, and what is the relationship between

the area of ∆ABC in a Euclidean plane and ∆ABC on the surface of a

sphere? In other words, find 
c Euclidean

c spherical

 and 
AreaEuclidean

Areaspherical

. The values of these

ratios will vary depending on the size and shape of the triangles, as well as

how large they are relative to the sphere. I will explore these ratios for a

variety of circumstances.

To do this, I will use spherical trigonometry. Because ∆ABC is not

necessarily right, I will use trigonometry for oblique triangles. The key

formulae for solving this problem are the law of cosines for sides and the

law of sines. The derivations of them are much like the derivations for the



4

law of cosines and law of sines in Euclidean trigonometry. The first step is

to derive a trigonometry for right triangles.

The measure of the angle formed by the intersection of two great

circles is defined to be equal to the measure of the angle formed by the

two lines tangent to each great circle at the point of intersection. It is also

equal to the measure of the dihedral angle formed by the planes of the

great circles. (The measure of a dihedral angle is the measure of the angle

formed by the two lines of intersection made by the two planes forming

the dihedral angle with a plane perpendicular to the two planes’ line of

intersection.) This is shown in the following proof.

Call the point of intersection of the two great circles A and the

center of the sphere O. Let lines l and m each be tangent at A to one of the

great circles that intersect at A. l ⊥OA and m ⊥ OA because l and m are

each tangent to a circle that OA is a radius of (and a line tangent to a

circle is perpendicular to the radius of the circle that intersects it).

Because of this, the measure of the dihedral angle formed by planes l-O

and m-O is equal to the measure of the angle formed by l and m, and

therefore equal to the measure of the spherical angle formed by the

intersection of the great circles.
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In the picture above, O is the center of the sphere. ∆ABC is a right

spherical triangle with the right angle at C.

Construct plane DEF through any point E on OB such that plane DEF ⊥

OA. Let D be on OA, and F be on OC. DE ⊥ OA and DF ⊥ OA because DEF ⊥

OA and DE and DF are on DEF. Then ∆ODF is a right triangle with its right

angle at D because DF ⊥ OA, and ∆ODE is a right triangle with its right

angle at D because DE ⊥ OA. DEF ⊥ OAC because DEF ⊥ OA and OA is on

OAC. If two planes intersect and are each perpendicular to a third plane

then their line of intersection is perpendicular to the third plane; so EF ⊥

OAC because

BCO ⊥ OCA and DEF ⊥ OCA. OC is on OCA, therefore EF ⊥ OC, so ∆OFE is

right. Also, DF is on OCA, therefore EF ⊥ DF, so ∆DFE is right.

For each part of spherical triangle ABC, there is an angle whose

measure equals the measure of the part (I will be expressing all angle and
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arc measurements in radians). Each part and corresponding angle are:

m∠A = m∠EDF a = m∠FOE

m∠B = m∠DEF b = m∠DOF

m∠C = m∠DFE c = m∠DOE

 Because of this, sin a = sin m∠FOE = FE
OE

 = FE
ED

ED
OE

 = sin A sin c.

Using similar logic and constructing a plane perpendicular to OB instead

of OA, six more formulas are obtained for a total of seven. Using these

seven formulas an additional three formulas can be derived to make a

total of ten formulas. These ten formulas are:

 sin a = sin A sin c sin b = sin c sin B

tan a = sin b tan A tan b = sin a tan B

tan a = tan c cos B tan b = tan c cos A

cos c = cos a cos b cos c = cot A cot B

cos A = cos a cos B cos B = cos b sin A  2

To derive the law of sines and the law of cosines for sides, the

construction of an altitude must be made. Construct the altitude from

vertex C to side c and extend if necessary. The two cases (not extending

side c and extending side c) a are depicted here:
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    Case I: c does not need to be extended.           Case II: c does need to be extended.

Law of Sines

The identities of right spherical triangles listed before yield:

sin h = sin a sin B, and sin h = sin b sin A

Substituting for sin h, sin a sin B = sin b sin A. Dividing both sides by

sin A sin B,

sin a 
sin A

  =   sin b 
sin B

.

If the altitude h were constructed from vertex B to side b, the derived

identity would be:

sin a 
sin A

  =   sin c 
sin C

By transitivity,

sin a 
sin A

  =   sin b 
sin B

  =   sin c 
sin C

.  4

Law of Cosines for Sides

In both cases, ∆ADC is right with ∠D being the right angle. Applying
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identities for right spherical triangles,

cos a = cos h cos (c-m) for the first case, and

cos a = cos h cos (m-c) for the second case.

Because cos (c-m) = cos (m-c), cos h cos (c-m) = cos h cos (m-c).

Therefore, the first case can be used to derive the formula for both cases.

Because cos (α-β) = cos α cos β + sin α sin β,

cos h cos (c-m) = cos h (cos c cos m + sin c sin m)

Applying the identities for right spherical triangles to ∆ADC,

cos b = cos h cos m (dividing both sides by cos h gives cos m   =   cos b 
cos h 

),

sin m = tan h cot A, and sin h = sin b sin A.

Substituting for cos m and sin m,

cos h  (cos c  cos m  + sin c  sin m ) = cos h 
ä 

ã 
å å å 
å cos c   

cos b 
cos h 

 + sin c  tan h  cot A
ë 

í 
ì ì ì 
ì 

Distributing,

cos h   
ä 

ã 
å å å 
å cos c   

cos b 
cos h 

  +   sin c  tan h  cot A 
ë 

í 
ì ì ì 
ì   =   cos c  cos b  + sin c  sin h  cot A 

Substituting sin h = sin b sin A and using the fact that sin A cot A = cos A,

cos c cos b + sin c sin h cot A = cos c cos b + sin c sin b cos A.
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Therefore, by transitivity,

cos a = cos c cos b + sin c sin b cos A.

By constructing the altitude h to sides a and b instead of c, these three

forms of the law of cosines for sides can be derived:

cos a = cos c cos b + sin c sin b cos A

cos b = cos a cos c + sin a sin c cos B

cos c = cos b cos a + sin b sin a cos C  5

For an example, I will use the triangle formed on the Earth by New

York, Moscow and the North Pole. The distance between New York and

Moscow will be unknown.

The Earth can be treated as a sphere with a radius of 3959mi. Such a

sphere is called the terrestrial sphere. On the terrestrial sphere, the

equator is the great circle that determines a plane perpendicular to the

line drawn between the North Pole and the South Pole. A meridian is a

great circle that intersects both poles. The prime meridian is the meridian

that Greenwich, England intersects. In the following picture, the North Pole

is at point N and the center of the sphere is at point O.
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The longitude of a point P on the sphere is the measure of the arc

intercepted on the equator by the meridian that P is on and the prime

meridian. In the above picture, it is the measure of arc EF (which equals

m∠EOF). Longitude is positive when P is West of the prime meridian and

negative for when P is East of the prime meridian. The latitude of a point P

on the sphere is the measure of the arc intercepted on the meridian that P

is on by P and the equator. In the above picture, it is the measure of arc PE

(which equals m∠POE). Latitude is positive when P is North of the equator

and negative when P is South of the equator. The colattitude of a point P is

π/2 - the latitude of point P. This is the measure of the arc intercepted on

the meridian P is on by P and the North Pole (the measure of arc PN).
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In the picture above, N is New York, M is Moscow, and P is the North

Pole. The distance between the North Pole and New York is New York’s

colattitude (NP), and the distance between the North Pole and Moscow is

Moscow’s colattitude (MP). The difference in longitude between New York

and Moscow is the arc intercepted on the equator by the meridians they

are on. In the above picture, this is arc EF. The measure of arc EF = m∠EOF.

Because the plane the equator is in is perpendicular to the line

determined by the North Pole and South Pole, m∠EOF equals the measure

of the dihedral angle formed by plane NEO and plane MFO (namely, N-PO-

M). Because m∠EOF equals the measure of dihedral angle N-PO-M and the

measure of N-PO-M is the measure of spherical angle NPM, m∠EOF equals

the measure of spherical angle NPM. m∠EOF equals the measure of arc EF,

which is the difference in longitude between New York and Moscow.
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Therefore, the measure of the angle formed by New York and Moscow

with North Pole (the North Pole as the vertex) is the difference in

longitude between the two.

New York’s longitude is 37π/90, and its latitude is 2443π/10800.

Moscow’s longitude is -1127π/5400 and latitude is 223π/720.

n = colattitude of N = π/2 - 2443π/10800 = 2957π/10800.

m = colattitude of M = π/2 - 223π/720 = 137π/720.

P = difference in longitude = 37π/90 + 1127π/5400 = 3347π/5400.

By the law of cosines for sides,

cos NM = cos m cos n + sin m sin n cos P = .382398175, so

NM = Arccos .382398175 = 1.178405986 radians. To get the result in

miles, this is multiplied by the radius (3959mi) to get 4665.309297mi. If

one used Euclidean trigonometry to calculate this,

NM2   =   m 2 + n 2   −   2 mncos P = 23122014.49, so

NM =   23122014.49   =   4808. 535587mi.

The result from using Euclidean trigonometry is significantly larger

than the result from spherical trigonometry. This is because the given

lengths wrap along the sphere, making the distance between them smaller

than if they were straight.
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The problem I presented at the beginning of the paper is:  For a

triangle ABC — where a, b, and c are the lengths of the sides opposite

angles A, B, and C, respectively —, given a, b, and the measure of angle C,

what is the relationship between c where ∆ABC is in a Euclidean plane, and

c where ∆ABC is on the surface of a sphere and what is the relationship

between the area of ∆ABC in a Euclidean plane and ∆ABC on the surface of

a sphere? In other words, find 
c Euclidean

c spherical

 and 
AreaEuclidean

Areaspherical

. The triangles in this

problem are illustrated here:

Euclidian Spherical

The first part of the problem is to find 
c Euclidean

c spherical

. The first part of

finding this is to find the Euclidean c and spherical c independently.
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Euclidean

c 2   =  a2 + b 2 − 2 abcos C 

à c =   a 2 + b 2 − 2 abcos C 

Spherical

I will use the constant r as the radius of the sphere. To apply law of

cosines for sides, everything must be expressed in arc length.

length
2 π r 

= arc
2 π 

arc = length
r 

Applying the law of cosines for sides,

cos 
c 
r 

  =  cos 
a 
r 

 cos 
b 
r 

  +  sin 
a 
r 

 sin 
b 
r 

 cos C 

c 
r 

  =  Arccos 
ä 
ã 
å å å  cos 

a 
r 

 cos 
b 
r 

  +  sin 
a 
r 

 sin 
b 
r 

 cos C 
ë 

í 
ì ì ì 

c =   r  Arccos 
ä 
ã 
å å å  cos 

a 
r 

 cos 
b 
r 

  +  sin 
a 
r 

 sin 
b 
r 

 cos C 
ë 

í 
ì ì ì 

Therefore,

c Euclidean

c spherical

= 
a 2 + b 2 − 2 abcos C 

r  Arccos 
ä 
ã 
å å å  cos 

a 
r 

 cos 
b 
r 

  +  sin 
a 
r 

 sin 
b 
r 

 cos C 
ë 

í 
ì ì ì 

The second part of the problem is to find 
AreaEuclidean

Areaspherical

. The first part of
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finding this is to find each area independently.

Euclidean

Put ∆ABC in a coordinate plane, with C at the origin.

sin C = 
y 
b 

. à   b sin C =   y . Area = ( 1 

2 
)(base)(height), so Area = 1 

2 
ay.

Substituting for y,

Area = 1 

2 
absin C

Spherical

Using to law of sines to get A and B, 
sin A

sin 
a 
r 

  =   sin B

sin 
b 
r 

  =   sin C

sin 
c 
r 

. Therefore,

A =  Arcsin 

ä 

ã 
å å å 
å å å 
å å å 
å å å 
å å sin 

a 
r 

  sin C 

sin 
c 
r 

ë 

í 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì 

   and  B =  Arcsin 

ä 

ã 
å å å 
å å å 
å å å 
å å å 
å å sin 

b 
r 

  sin C 

sin 
c 
r 

ë 

í 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì 

The area of a spherical triangle is equal to r 2 E , where E is the angle

excess of the triangle.6 The angle excess of a triangle is the amount the
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sum of the measures of its angles is over π (the sum of the angles - π). For

example, the 90°-90°-90° triangle (whose angles are all 90°, or π/2

radians) has an area 1/8 of the surface area of the sphere. Using the angle

excess formula, its area = 
r 2 

2 
. The surface area of a sphere is 4πr 2 , so the

result from the angle excess formula is true.

In the original problem, the angle excess formula gives:

Area = r 2 á A +  B +  C −   é . Substituting for A and B,

Area = r 2 

ä 

ã 
å å å 
å å å 
å å å 
å å å 
å å 

 Arcsin 

ä 

ã 
å å å 
å å å 
å å å 
å å å 
å å sin 

a 
r 

  sin C 

sin 
c 
r 

ë 

í 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì 

  +  Arcsin 

ä 

ã 
å å å 
å å å 
å å å 
å å å 
å å sin 

b 
r 

  sin C 

sin 
c 
r 

ë 

í 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì 

  +  C −   

ë 

í 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì 

Therefore,

AreaEuclidean

Areaspherical

 = 

1 

2 
absin C

r 2 

ä 

ã 
å å å 
å å å 
å å å 
å å å 
å å 

 Arcsin 

ä 

ã 
å å å 
å å å 
å å å 
å å å 
å å sin 

a 
r 

  sin C 

sin 
c 
r 

ë 

í 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì 

  +  Arcsin 

ä 

ã 
å å å 
å å å 
å å å 
å å å 
å å sin 

b 
r 

  sin C 

sin 
c 
r 

ë 

í 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì 

  +  C −   

ë 

í 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì ì 
ì ì 

I will explore these ratios for the special case where a=b=k on the

unit sphere (where the radius, r, equals one). Because the only triangles I

am dealing with are those whose angles each have a measure less than π
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and greater than 0, 0 < C < π. Also, 0 < k < π because otherwise k would

not fit the definition of a line segment. Below are graphs of the 
c Euclidean

c spherical

ratio as a function of C (
c Euclidean

c spherical

 is on the y-axis and C is on the x-axis).

There are two graphs: one where k=π/2 and another where k=1.2.

k = π/2

y=1

k=1.
2 y=1

As k increases, 
c Euclidean

c spherical

 increases (no matter what the value of C is).
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This implies that the spherical c becomes increasingly smaller than the

Euclidean c as more of the sphere is covered by sides a and b.

The limit of 
c Euclidean

c spherical

 as k approaches zero is 1. This implies that for

small values of k, the difference between Euclidean c and spherical c is

negligible. An example of this is when one deals with local triangles on the

Earth. If one is dealing with triangles that are small relative to the size of

the Earth (these are about all of the triangles encountered in every-day

life), one can use Euclidean trigonometry and get results just about as

accurate as one would have gotten had they used spherical trigonometry.

The limit of 
c Euclidean

c spherical

 as C approaches π is 1. This is because the length

of side c is getting closer to a+b (which always has the same value in the

Euclidean triangle as in the spherical triangle).

When k > π/2, there is a “liftoff” of the entire graph. The graph of

c Euclidean

c spherical

 where k=2.4 (a number greater than π/2) is presented below:
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k = 2.4

y=1

This liftoff is due to a wrap-around effect. Wrap-around occurs when k is

greater than one quarter of the circumference of the sphere. When this

happens, the length of side c decreases as k increases because sides a and

and b are wrapping around the place where c is maximized. Thus, the

maximum value for c is when k=π/2. My proof of this is presented here:

c =    Arccos á  cos2   k   +  sin2   k  cos C é 

Differentiating with respect to k yields:

d c 
d k 

  =   ä 

ã 
å å å 
å å å − 1 

1 − á cos2 k   +  sin2 k  cosC é 2 

ë 

í 
ì ì ì 
ì ì ì á − 2 cos k  sin k   +   2 sin k  cos k  cos C é 

Factoring out 2 cos k  sin k ,
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d c 
d k 

  =   − 1 

1 − á cos2 k   +  sin2 k  cos Cé 2 
á 2 cos k  sin k   á cos C   − 1 é é 

d c 
d k 

  =   − 2 cos k  sin k   á cos C   − 1 é 

1 − á cos2 k   +  sin2 k  cos C é 2 

The critical points are at the values of k that make the derivative either

equal to zero or undefined. The derivative equals zero when its numerator

equals zero, and it is undefined when the denominator equals zero. Thus,

the values of k that are critical points are values that make the numerator

equal to zero or make the denominator equal to zero.

Case I: the numerator equals zero

Setting the numerator equal to zero,

− 2 cos k  sin k   á cos C   − 1 é   =   0 

Both cos C - 1 and -2 are constants, so both sides of the equation can be

divided by − 2 á cos C   − 1 é  without losing a root. Executing this division,

cos k  sin k   =   0 

If a product of two numbers equals zero, than one or both must equal

zero. Therefore,

cos k   =   0    or   sin k   =   0 

à  k   =   π 
2 

   or   k   =   0    or   k   =   π 
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Case II: the denominator equals zero

Setting the denominator equal to zero,

1 − á cos2 k   +  sin2 k  cos C é 2 
  =   0 

Squaring both sides, adding á cos2 k   +  sin2 k  cos C é 2 
 to both sides, and then

taking the square root of both sides,

cos2   k   +  sin2 k  cos C   =   " 1 

Substituting 1   −  cos2 k  for sin 2 k ,

cos2   k   +   á 1   −  cos2  k é cos C   =   " 1 

Distributing cos C,

cos2 k   +  cos C   −  cos2 k  cos C   =   " 1 

Factoring out cos2 k ,

á 1   −  cos C é cos2 k   +  cos C   =   " 1 

Subtracting cos C from both sides and dividing both sides by (1 - cos C),

cos2 k   =   " 1   −  cos C 
1   −  cos C 

à k   =  Arccos
ä 

ã 
å å å 
å " " 1 − cos C 

1   −  cos C 

ë 

í 
ì ì ì 
ì 

Because the radicand must be positive and |cos C| < 1, the -1 of the " 1 

must be discarded. Therefore,
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k   =  Arccos
ä 

ã 
å å å 
å " 1   −  cos C 

1   −  cos C 

ë 

í 
ì ì ì 
ì 

à k   =  Arccos á " 1 é   =  Arccos á " 1 é 

à k   =   0    or   k   =   π 

The set of all the critical points is the union of the points from Case I

(numerator = 0) and the points from Case II (denominator = 0).

Therefore, the critical points are:

k   =   π 
2 

,  k   =   0 , and k   =   π 

To find which are relative maxima, I will make a sign diagram of 
d c 

d k 
.

d c 

d k 
 is reprinted here:

d c 
d k 

  =   − 2 cos k  sin k   á cos C   − 1 é 

1 − á cos2 k   +  sin2 k  cos C é 2 

(cos C - 1) is always negative because |cos C| < 1. The denominator is

always greater than or equal to zero because it is a positive square root.-

2 is always negative, so the sign of 
d c 
d k 

 when k is not a critical point is the

sign of cos k  sin k .

When 0   <   k   <   π 
2 

, cos  k  and sin k  are both positive, so 
d c 
d k 

 is positive.
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When 
π 
2 

  <   k   <   π , cos  k  is negative and sin k  is positive, so 
d c 
d k 

 is

negative when 
π 
2 

  <   k   <   π . The sign diagram is drawn below:

π 
2 

0 π 
++++++++++ - - - - - - - - - - - d c 

d k 

Thus, c is increasing over the interval (0, π/2) and decreasing over

the interval (π/2, π). Therefore, there is a relative maximum at k   =   π 
2 

.

Within the domain there is no other relative maximum, so k   =   π 
2 

 is the

absolute maximum for c.

Below are two graphs of 
AreaEuclidean

Areaspherical

 as a function of C. 
AreaEuclidean

Areaspherical

 is on

the y-axis, and C is on the x-axis. In one graph, k=1. In the other, k=π/2.
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y=1

k=1

y=1

k=π/2

The limit as k approaches zero of 
AreaEuclidean

Areaspherical

 equals one. As k increases, the

y-intercept increases. Also as k increases, the limit as C approaches π of

AreaEuclidean

Areaspherical

 decreases, and reaches a minimum of zero at k = π/2. When

k > π/2, the wrap-around effect creates a liftoff of the graph. A graph

where k > π/2 is presented here:
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k=2

y=1

In the amount of time I was given to complete this paper, I was

unable to accomplish several things. I could not explore the 
AreaEuclidean

Areaspherical

ratio for isosceles triangles as much as I wanted. Also, I did not have

enough time to explore the two ratios for non-isosceles triangles. I believe

wraparound affects the ratios for non-isosceles triangles when the sum

a+b is greater than πr/2 (π/2 on the unit sphere). In addition, I was unable

to explore the ratios when the radius of the sphere is a constant r.

However, the work I did where the radius equals one can apply to all
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spheres; the units of length can always be defined such that the length of

the radius of the sphere equals one. For example, on Earth one can

measure everything in terms of Earth radii.
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NOTES

1. Picture from Paul R. Rider, Plane and Spherical Trigonometry, New York: The

Macmillan Company, p. 201

2. Ten formulas from Rider, Plane and Spherical Trigonometry p. 203

3. Both pictures from Rider, Plane and Spherical Trigonometry p. 212

4. Derivation adapted from Rider, Plane and Spherical Trigonometry pp. 211-212.

5. Derivation adapted from Rider, Plane and Spherical Trigonometry pp. 212-213

6. Angle excess formula adapted from Rider, Plane and Spherical Trigonometry p. 200


