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The Schrodinger equation describes the position of an electron as a wave. The wave function
Ψ(t,x) is interpreted as a probability density for the position of the electron. That is, the
probability of the electron being in a region Ω in space at a time t0 is

P (electron in Ω | at time t0) =

∫∫∫
Ω
|Ψ(t = t0)|2 dx∫∫∫

R3 |Ψ(t = t0)|2 dx

The Schrodinger equation for the hydrogen atom describes how the probability distribution
for the position of the electron in the atom evolves. It is{

i∂tΨ = −1
2
∆Ψ− 1

r
Ψ∫∫∫

|Ψ|2 dx finite
(1)

where r = |x|.

The first step in solving the equation is to seperate variables: let

Ψ(x, t) = T (t)v(x)

Plugging this into (1), we get

iT ′v = −1

2
T∆v − 1

r
Tv

Multiplying by 2 and dividing both sides by Tv,

2i
T ′

T
= −∆v

v
− 2

r

The left side of this equation depends only on t, and the right side depends only on x.
Therefore, both sides must equal a constant, λ.

The equation for T (t) is

T ′ =
λ

2i
T (2)
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We can solve this simply by seperating variables:

dT

dt
=

λ

2i
T

dT

T
=

λ

2i
dt∫ t

0

dT

T
=

∫ t

0

λ

2i
dt

log T − log T (0) =
λ

2i
t

T = T (0)e−iλt/2

Therefore, the T (t) eigenfunction is

T (t) = e−iλt/2 (3)

The equation for v(x) is

−∆v − 2

r
v = λv (4)

Thus, we have an eigenvalue problem for v. To solve it, we express v in spherical coordinates,
and look for seperable solutions of the form

v(x) = v(r, θ, φ) = R(r)Y (θ, φ)

Here, θ is the longitude coordinate and φ is the latitude coordinate. Therefore, we have
0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. We also require that Y is periodic in θ: Y (θ, φ) = Y (θ + 2π, φ)
for all θ.

In spherical coordinates, the Laplacian operator is

∆ = ∂rr +
2

r
∂r +

1

r2 sin φ
∂φ(sin φ)∂φ +

1

r2 sin2 φ
∂θθ

Using this and v = RY , (4) becomes

λRY︸ ︷︷ ︸
λv

+
2

r
RY︸ ︷︷ ︸
2
r
v

+ R′′Y +
2

r
R′ +

1

r2 sin φ
(sin(φ)RYφ)φ +

1

r2 sin2 φ
RYθθ︸ ︷︷ ︸

∆v

= 0

Multiplying both sides by r2/RY ,

λr2 + 2r +
r2R′′

R
+

2rR′

R
+

1

Y

(
1

sin φ
(sin(φ)Yφ)φ +

1

sin2 φ
Yθθ

)
= 0

and so

λr2 + 2r +
r2R′′

R
+

2rR′

R
= − 1

Y

(
1

sin φ
(sin(φ)Yφ)φ +

1

sin2 φ
Yθθ

)
(5)

2



The left side of this equation depends only on r, while the right side depends only on θ and
φ. Therefore, both sides must equal a constant. Call this constant γ. Setting the left side
of (5) equal to γ and multiplying both sides by R/r2, we get(

λ +
2

r
− γ

r2

)
R + R′′ +

2

r
R′ = 0 (6)

Setting the right side of (5) equal to γ and multiplying both sides by Y , we get

1

sin φ
(sin(φ)Yφ)φ +

1

sin2 φ
Yθθ + γY = 0 (7)

(6) is an ODE for R, and (7) is an eigenvalue problem for Y . Since we do not yet know
the eigenvalues γ, our approach will be to find the eigenfunctions Y first, and then solve the
equation for R. While solving the equation for R, we will also find the eigenvalues λ for v.
Once we do all of this, we will have the eigenfunctions v(r, θ, φ) = R(r)Y (θ, φ) for the entire
problem.

To solve (7), we look for seperable solutions Y (θ, φ) = Θ(θ)Φ(φ). Plugging this into (7), we
get

1

sin φ
(sin(φ)ΘΦ′)φ +

1

sin2 φ
Θ′′Φ + γΘΦ = 0

Multiplying both sides by sin2(φ)/ΘΦ,

sin(φ)
(sin(φ)Φ′)′

Φ
+

Θ′′

Θ
+ γ sin2(φ) = 0

and so

−Θ′′

Θ
= sin(φ)

(sin(φ)Φ′)′

Φ
+ γ sin2(φ) (8)

The left side of (8) is dependent only on θ, while the right side is dependent only on φ.
Therefore, both sides must equal a constant. Call this constant α. Then by setting each side
equal to α, we have

Θ′′ = −αΘ (9)

and
sin(φ) (sin(φ)Φ′)

′
+ γ sin2(φ)Φ = αΦ (10)

We first solve the Θ equation, (9). α = 0 is a degenerate solution, so we are only interested
in the cases where α 6= 0. First consider the case where α < 0. Let α = −k, k > 0. Then

Θ′′ = kΘ

The general solution to this is

Θ = Ae
√

kθ + Be−
√

kθ (11)
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Recall that we require Θ to be 2π periodic. However, (11) is not periodic, and so α cannot
be less than 0. Now, consider the case where α > 0. Let α = ω2. Then the general solution
to (9) is

Θ = Aeiωθ + Be−iωθ

Using the condition that Θ has period 2π, we get that

Aeiωθ + Be−iωθ = Aeiωθ+2πiω + Be−iωθ−2πiω

This happens when ω = m, m ∈ Z. Therefore, we get that the eigenvalues are α = m2, and
the eigenfunctions are

Θ(θ) = Aeimθ + Be−imθ

Note, however, that m can be negative. Thus, we can let B = 0 without losing any solutions.
This is because at the end, we are going to linearly combine the eigenfunctions Ψ = TRΘΦ.
Letting Cm = Am + B−m, the part of the linear combination for Θ is∑

m

Ameimθ + Bme−imθ = (A0 + B0) +
∑
m>0

(Am + B−m)eimθ + (A−m + Bm)e−imθ

= C0 +
∑
m>0

Cmeimθ + C−me−imθ

=
∑
m

Cmeimθ

Thus, we can say that the eigenfunctions are

Θ(θ) = Cmeimθ (12)

so long as there are the same number of negative values for m as positive values for m. The
corresponding eigenvalues are α = m2.

These eigenfunctions are orthogonal with respect to the inner product

(Θm, Θm′) =

∫ 2π

0

Θm(θ)Θ̄m′(θ)dθ =

∫ 2π

0

eimθe−im′θdθ

This is because for m 6= m′,∫ 2π

0

eimθe−im′θdθ =

∫ 2π

0

ei(m−m′)θdθ =
ei(m−m′)θ

i(m−m′)

∣∣∣∣2π

θ=0

= 0

Now that we know α = m2, the Φ equation (10) becomes

sin(φ) (sin(φ)Φ′)
′
+ γ sin2(φ)Φ = m2Φ

Bringing all the terms to one side and dividing by sin2 φ,

(sin(φ)Φ′)′

sin φ
+

(
γ − m2

sin2 φ

)
Φ = 0 (13)
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Note there could be singularities at φ = 0 or φ = π. Since we require that the solution to
the Schrodinger equation Ψ = TRΘΦ be finite everywhere, we have the condition that Φ is
finite at φ = 0 and φ = π.

Now, make a change of vairables s = cos φ. Then ds = − sin φdφ, and dφ = − ds
sin φ

. Also,

sin2 φ = 1− cos2 φ = 1− s2. Therefore,

(sin(φ)Φ′)′

sin φ
=

d
dφ

(
sin(φ)dΦ

dφ

)
sin φ

= − d

ds

(
− sin2(φ)

dΦ

ds

)
=

d

ds

(
(1− s2)

dΦ

ds

)
Thus, (13) turns into

d

ds

(
(1− s2)

dΦ

ds

)
+

(
γ − m2

(1− s2)

)
Φ = 0 (14)

In addition, the condition that Φ(φ) is finite at φ = 0 and φ = π turns into the condition
that Φ(s) is finite at s = ±1.

Equation (14) is called the associated Legendre equation, and its eigenfunctions are

Φ(s) = P
|m|
l (s) = P

|m|
l (cos φ) (15)

where l is an integer ≥ |m|. P k
l (s) is defined for l ≥ k = |m| as the function

P k
l (s) =

(−1)k

2ll!
(1− s2)k/2 dl+k

dsl+k
(s2 − 1)l (16)

The corresponding eigenvalues are γ = l(l + 1). 1

This solution is finite at s = ±1. Since l ≥ k = |m|, (s2 − 1)l is a polynomial of degree
2l ≥ l + k. Thus, (dl+k/dsl+k)(s2 − 1)l is a polynomial of degree 2l − (l + k) = l − k.
So, (dl+k/dsl+k)(s2 − 1)l is finite at s = ±1. Furthermore, (1 − s2)k/2 is finite at s = ±1,
and (−1)k/2ll! is a finite constant. Therefore, all the factors are finite, and so this solution
satisfies the condition that Φ is finite at s = ±1.

The eigenfunctions P
|m|
l are orthogonal with respect to the inner product

(P k
l , P k

l′ ) =

∫ 1

−1

P k
l (s)P k

l′ (s)ds

That is,

(P k
l , P k

l′ ) =

∫ 1

−1

P k
l (s)P k

l′ (s)ds = 0 for l 6= l′

1I am actually not sure where the (−1)k in equation (16) comes from. The section in Strauss on Legendre
functions seems to not have it. I was unable to derive this equation with the information in the section.
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As an example, consider the case when m = 0, l = 1, and l′ = 3. We have

P 0
1 (s) =

1

2

d

ds
(s2 − 1) = s

P 0
3 (s) =

1

48

d3

ds3
(s2 − 1)3

The third derivative is

d3

ds3
(s2 − 1)3 =

d3

ds3
(s6 − 3s4 + 3s2 − 1)

=
d2

ds2
(6s5 − 12s3 + 6s)

=
d

ds
(30s4 − 36s2 + 6)

= 120s3 − 72s

Thus, the inner product is∫ 1

−1

P 0
1 (s)P 0

3 (s)ds =
1

48

∫ 1

−1

s(120s3 − 72s)ds

=
1

48

∫ 1

−1

120s4 − 72s2ds

=
1

48

[
120

5
s5 − 72

3
s3

]1

−1

=
1

48

[
24s5 − 24s3

]1

−1

= 0

Recall that Y (θ, φ) = Θ(θ)Φ(φ). We can now put together an expression for Y :

Y m
l (θ, φ) = Θm(θ)Φm

l (φ) = eimθP
|m|
l (cos φ) (17)

The relation l ≥ |m| puts a constraint on l and m. They must be in the range

l ≥ 0 , −l ≤ m ≤ l

Also note that there are the same number of positive and negative values for m. This is
exactly condition we needed earlier in order to use Θ(θ) = eimθ instead of Θ(θ) = eimθ+e−imθ.

The functions Y m
l are called spherical harmonics. They are orthogonal with respect to the

inner product
(Y m

l , Y m′

l′ ) = (Θm, Θm′) · (Φm
l , Φm′

l′ )

To see why this is true, consider the possible cases for the indices l,m, l′, and m′. We can
split the cases up as follows:

Case 1 : m 6= m′

Case 2 : m = m′ and l 6= l′

Case 3 : m = m′ and l = l′
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For Case 1, since m 6= m′, we have (Θm, Θm′) = 0, and so (Y m
l , Y m′

l′ ) = 0. For Case 2, since
m = m′ and l 6= l′, we have (Φm

l , Φm′

l′ ) = (Φm
l , Φm

l′ ) = 0, and so (Y m
l , Y m′

l′ ) = 0. Case 3 is the
case where Y m

l = Y m′

l′ , and so this case does not affect orthogonality. Thus, (Y m
l , Y m′

l′ ) = 0
if m 6= m′ or l 6= l′, and so the functions Y m

l form an orthogonal set.

Note that the formula for the inner product is

(Y m
l , Y m′

l′ ) =

∫ 2π

0

eimθe−im′θdθ

∫ 1

−1

P
|m|
l (s)P

|m|
l′ (s)ds =

∫ 2π

0

∫ 1

−1

eimθe−im′θP
|m|
l (s)P

|m|
l′ (s)dsdθ

(18)
Since s = cos φ, we have ds = − sin φdφ, and so

(Y m
l , Y m′

l′ ) =

∫ 2π

0

∫ 0

π

eimθe−im′θP
|m|
l (φ)P

|m|
l′ (φ)(− sin φ)dφdθ

=

∫ 2π

0

∫ π

0

eimθe−im′θP
|m|
l (φ)P

|m|
l′ (φ) sin(φ)dφdθ

At this point, we have found the eigenfunctions Y m
l , and have a solution for the time part

T (t). So the only part of the solution to Ψ(t, r, θ, φ) = T (t)R(r)Y (θ, φ) that we no not know
yet is R(r). Recall that the equation for R is(

λ +
2

r
− γ

r2

)
R + R′′ +

2

r
R′ = 0

Plugging in γ = l(l + 1) and rearranging terms, we get

R′′ +
2

r
R′ +

(
λ +

2

r
− l(l + 1)

r2

)
R = 0 (19)

Beacuse of the condition that
∫∫∫

|Ψ|2 dx is finite, we require that R(r) is finite for all r (in
particular, R(0) must be finite), and also that R(∞) is finite.

We can solve the ODE (19) for λ < 0 by doing a change of variables and then looking for
solutions in the form of a power series. 2 Let w(r) = eβrR(r), where β =

√
−λ for λ < 0.

Then R = e−βrw, and so

R′ = −βe−βrw + e−βrw′

= e−βr(−βw + w′)

R′′ = −βe−βr(−βw + w′) + e−βr(−βw′ + w′′)

= e−βr(β2w − 2βw′ + w′′)

Substituting these for R, R′, and R′′ in (19), as well as λ = −β2, we get

e−βr(β2w − 2βw′ + w′′) +
2

r
e−βr(−βw + w′) +

(
−β2 +

2

r
− l(l + 1)

r2

)
e−βrw = 0

2I tried to show that there are no solutions for λ ≥ 0 satisfying the condition R(0) finite, R(∞) finite,
but can’t yet — I actually haven’t taken an ODE course and don’t have much experience with ODEs.
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Since e−βr is never 0, we can divide by it. Doing this and distributing,

β2w − 2βw′ + w′′ − 2

r
βw +

2

r
w′ − β2w +

2

r
w − l(l + 1)

r2
w = 0

Combining like terms,

w′′ + 2

(
1

r
− β

)
w′ +

(
2(1− β)

r
− l(l + 1)

r2

)
w = 0 (20)

Now, consider the power series expansion of w, w(r) =
∑∞

k=0 akr
k. Any analytic function

can be expressed as a power series, so any (nice) solution is a solution of this form. We want
to find the coefficients ak. Plugging in the series into (20), we get

∞∑
k=0

k(k − 1)akr
k−2 + 2

(
1

r
− β

) ∞∑
k=0

kakr
k−1 +

(
2(1− β)

r
− l(l + 1)

r2

) ∞∑
k=0

akr
k = 0

Note that we can say the sums for the derivatives start at k = 0. This is because all the
coefficients before the constant term are zero. Thus, terms before the constant term are
zero anyway, except possibly when r = 0. As we will soon see, however, we will find the
coefficients by requiring the expression above to be zero for all r, and so the case when r = 0
will not affect our argument. Distributing the last two terms and bringing the factors of 1/r
and 1/r2 into the sums,

∞∑
k=0

k(k−1)akr
k−2+2

∞∑
k=0

kakr
k−2−2β

∞∑
k=0

kakr
k−1+2(1−β)

∞∑
k=0

akr
k−1−l(l+1)

∞∑
k=0

akr
k−2 = 0

Now, change the indices in the third and fourth sums such that all sums are expressed in
terms of factors of rk−2. This gives us

∞∑
k=0

k(k−1)akr
k−2+2

∞∑
k=0

kakr
k−2−2β

∞∑
k=1

(k−1)ak−1r
k−2+2(1−β)

∞∑
k=1

ak−1r
k−2−l(l+1)

∞∑
k=0

akr
k−2 = 0

Combining the sums with the same indices,

∞∑
k=0

[k(k − 1) + 2k − l(l + 1)] akr
k−2 +

∞∑
k=1

[−2β(k − 1) + 2(1− β)] ak−1r
k−2 = 0

Now, the left hand side must be identically zero. Therefore, the all the coefficients of rk−2

must be zero. Thus, for k = 0, we get

−l(l + 1)a0 = 0 (21)

For all other k, we get

[k(k − 1) + 2k − l(l + 1)] ak + [−2β(k − 1) + 2(1− β)] ak−1 = 0
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Bringing the ak−1 term to the other side of the equation and expanding products,[
k2 − k + 2k − l(l + 1)

]
ak = − [−2βk + 2β + 2− 2β] ak−1

and so
[k(k + 1)− l(l + 1)] ak = 2(βk − 1)ak−1 (22)

Thus, (21) and (22) gives us a recursion relation for ak.

Now, recall that l is an integer with l ≥ 0. If l = 0, then a0 is arbitrary. If not, then by (22)
we get that a1 = 0 if l > 1. If l = 1 then a1 can be anything.

We can show by induction that all ak are 0 until al, which is arbitrary. In the case where
k = 0, (21) tells us that a0 = 0 if l > 0, and that a0 can be anything if l = 0. Now, assume
ak−1 = 0 for 0 < k < l. By (22), we get

[k(k + 1)− l(l + 1)] ak = 0

And since k < l, k(k + 1)− l(l + 1) 6= 0 and so ak = 0. In the case where k = l, (22) gives us

0 · al = 2(βl − 1)al−1 = 0

and so al can be anything.

Now, consider the case when β = 1/n, where n is an integer, n > l. Then (22) gives us

[n(n + 1)− l(l + 1)]an = 2

(
1

n
· n− 1

)
ak−1 = 2(1− 1)ak−1 = 0

and so an = 0. Furthermore, once an = 0, (22) tells us that all ak = 0 for k > n as well. Thus,
the power series w(r) =

∑
k akr

k is a polynomial of degree n− 1. Since R(r) = e−βrw(r), we
get that R(r) is a decreasing exponential times a polynomial. Thus, R(r) → 0 as r → ∞,
and so the condition that R(∞) = 0 is satisfied.

If β is not of the form 1/n, then using (22) and the fact that all coefficients before al are 0,
we get

ak = al

k∏
j=l+1

2(βj − 1)

j(j + 1)− l(l + 1)

Thus, for very large k, we can say

ak ≈ al

k∏
j=l+1

2βj − 2

j(j + 1)
= 2al

k∏
j=l+1

(
β

j + 1
− 1

j(j + 1)

)
≈ 2al

k∏
j=l+1

β

j
= 2al

βk−l

(k)k−l

where I used the notation (p)q = p(p− 1)(p− 2) · · · (p− (q − 1)) for integers p and q. Now,
for large r, the power series is dominated by the terms ak for large k. Therefore, for large r,
we can use the above approximation to get

w(r) =
∑

k

akr
k ≈ 2al

∑
k

βk−l

(k)k−l

rk
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So, R(r) = e−βrw(r) has the limit

lim
r→∞

R(r) = lim
r→∞

w(r)

eβr
= lim

r→∞

2al

∑
k

(
βk−l/(k)k−l

)
rk∑

k βkrk/k!

Multiplying by 1 in the form βl/l!
βl/l!

, we get that this is

lim
r→∞

R(r) = lim
r→∞

2al

βl/l!

∑
k

(
βk/k!

)
rk∑

k βkrk/k!
=

2al

βl/l!
6= 0

Thus, the condition that R(∞) = 0 is not satisfied, and so β must equal 1/n for an integer
n > l.

Therefore, we get from the β = 1/n case that the eigenfunctions are

R(r) = e−r/n

n−1∑
k=l

akr
k (23)

where the ak satisfy

al = 1

ak =
2(βk − 1)

k(k + 1)− l(l + 1)
ak−1 , k > l

and n > l. We can set al = 1 because all ak are some constant number times al due
to the recursion relation—thus, al is a constant factor. The corresponding eigenvalues are
λ = −β2 = −1/n2.

Now, we know the eigenfunctions R and Y , as well as the solution for T . We can now put
the whole problem together using (3), (23) and (17). The eigenfunctions are

Ψlnm(t, r, θ, φ) = Tn(t)Rln(r)Y m
l (θ, φ) = eit/2n2

e−r/neimθP
|m|
l (cos φ)

n−1∑
k=l

akr
k (24)

Thus, using linearity we get the more general solution

Ψ(t, r, θ, φ) =
∞∑
l=0

l∑
m=−l

∞∑
n=l+1

Almn

[
eit/2n2

e−r/neimθP
|m|
l (cos φ)

n−1∑
k=l

akr
k

]
(25)

Using an initial probability distribution Ψ0(r, θ, φ) = Ψ(t = 0, r, θ, φ) we should be able
to compute the coefficients Almn. First, note that the plugging in t = 0 gets rid of the T
eigenfunction, since T (t = 0) = 1. Thus,

Ψ0 =
∑

l

∑
m

∑
n

AlmnRlnY
m
l
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Now, recall that the functions Y m
l (θ, φ) are orthogonal with respect to the inner product

(18). So for a particular l′ and m′, taking the inner product with Y m′

l′ makes all terms in the
l and m sums zero except the l′th and m′th. Thus, taking the inner product gives us∫ 2π

0

∫ π

0

Ψ0Y
m′

l′ dφdθ =
∥∥∥Y m′

l′

∥∥∥2
∞∑

n=l′+1

Al′m′nRl′n (26)

I wasn’t able to find an inner product for the R functions that makes Rl′n an orthogonal set
(either through research or on my own—I did try to get one for a long time). I also actually
haven’t seen anything that suggests there is or isn’t a such an inner product. However, since
the degree of each of the polynomials in Rl′n is different for each value of n, the functions
Rl′n seem like they would be orthogonal under some inner product. Even if they aren’t
orthogonal, though, they would at least be linearly independent. So even in the worst case,
there should be some way to compute the coefficients Al′m′n, even if it involves solving a
linear system numerically.

If we do have that inner product in which the Rl′n or orthogonal, we can use it to isolate
the particular coefficient. That is, for a particular n′, we can take the inner product of both
sides with Rl′n′ and get(

Rl′n′ ,

∫ 2π

0

∫ π

0

Ψ0Y
m′

l′ dφdθ

)
=

∥∥∥Y m′

l′

∥∥∥2

Al′m′n′ ‖Rl′n′‖2

This gives us

Al′m′n′ =

(∥∥∥Y m′

l′

∥∥∥2

‖Rl′n′‖2

)−1 (
Rl′n′ ,

∫ 2π

0

∫ π

0

Ψ0Y
m′

l′ dφdθ

)
(27)
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