Minimizing Boolean Sum of Products Functions

David Eigen

Table of Contents

Introduction and Primitive Functions

SIMP Y

Cofactor

SIMPIY

16

19

28

29

30

32

36

14

26

26

34

42

Digital design is the design of hardware for computers. At the lowest level,
computers are made up of switches and wires. Switches normally have two states and can
only be in one state at a time. They may be manually controlled or may be controlled by
the outputs of other parts of the computer. Wires also have two states, each corresponding
to the level of voltage in the wire. Although wires may conduct any level of voltage, in
digital design we restrict the amount of states to two: low voltage and high voltage.

In combinational design, one is given a truth table and must realize it into
hardware. Depending on what the application of the hardware is, it may be optimal to
have the hardware return the answer as quickly as possible (minimizing delay) or to use
as little hardware as possible (minimizing cost). There are many techniques for doing
this. Among them are Karnaugh Maps, the Quine-McCluskey algorithms, Simplify, and
Espresso. In this paper, | will explore a few of these techniques, and compare and
contrast them.

All of the techniques are derived from boolean algebra. Boolean algebra is a way
of manipulating boolean variables. A boolean variable has exactly two states, just as the
switches and wires at the lowest level of a computer have two states. Although the states
of wires in a computer are always called HI and LO, the states of a boolean variable may
be called true and false, on and off, or anything else. Usually, we use the states “1” and
“0” because they are the easiest to work with.

A boolean function is a function that takes boolean parameters (inputs) and
returns a boolean output. Primitive functions take one or two inputs. A two-input truth
table has four lines: one line for each combination of 1s and Os that can be assigned to the

two inputs. There are four because for each 1 or O for the first input, the second input can

be either 1 or 0. Therefore, there are 2*2 = 4 combinations. For an N-input truth table, the
first input can be either 1 or O; the second input can be either 1 or O for each 1 or O in the
first input; the third input can be either 1 or O for any of the 2*2 different combinations of
the first two inputs, doubling the number of combinations to 2*2*2; the fourth input can

be either 1 or O for each of the different combinations of the first three inputs, doubling
the number of combinations to 2*2*2*2, and so on. By the time we get td"theut,

there are2" combinations. Thus, an N-input truth table Baslines.

There are sixteen different 2-input functions. This is because a 2-input truth table
has 4 lines. The first line can correspond to an output of 1 or 0. For each of these
possibilities, the second line can either be a 1 or a 0, making 2*2 combinations. The third
line can correspond to an output of either 1 or O for each of the 2*2 combinations of the
first two lines, making 2*2*2 possibilities. The fourth line can correspond to an output of
either 1 or O for each of the 2*2*2 combinations of the first three lines, making
2*2*2*2 = 16 possibilities. Extending this to &rline truth table, there ar2" different
possibilities. And since for aX-input truth table there ar2" lines,L = 2". Therefore,
anN-input truth table can hav#® different functions.

Of the sixteen functions for a 2-input truth table, only seven are commonly used. |
will now examine these seven crucial functions.

The invert (NOT) function takes one input, and its output is the opposite state of
the input. Thus, NOT 1 =0, and NOT 0 = 1. The truth table of the invert function is the

following:

NOT A is also called the complement of A, which is denoted
The AND function’s output is 1 when both of its two inputs are one. Thus,

A AND B is 1 only when A and B are both one. The truth table of the AND function is

the following:

R R Oool>
ROROoOlW

Since anything times 0 equals 0, and 1 times 1 equals 1, A AND B looks like a

multiplication table for A and B. Thus, A AND B is denoted as the product of A and B,

ADB, or AB.

The OR function’s output is 1 when any of its two inputs are 1. Thus, AORBis 1

whenever Ais 1 or B is 1. The truth table of the OR function is the following:

A | B | AORB
0 ‘ 0 ‘ 0
0 1 1
1 ‘ 0 ‘ 1
1 1 1

Since 1 +0=1and 0 + 0 = 0, the truth table for A OR B looks somewhat like an addition
table for A and B. Thus, A OR B is denoted as the sum of A and B, A+B.
The exclusive OR (XOR) function is 1 whenever either, but not both, of its two

inputs is 1. Thus, A XOR B is 1 when only one of either A or B is 1. The truth table of

the XOR function is the following:

A | AXORB
0
0
1
1

A XOR B is denoted a8 [B. Note thatA B = (A+ B) [{A[B).

The other three primitive functions, NAND, NOR, and XNOR, are the
complements of AND, OR , and XOR, respectivély\\AND B = A[B,

ANORB = A+B, andA XNORB = A B.

There are four properties for boolean algebra. Often, they are called axioms.
However, given the definitions of AND, OR, and NOT, they can be proved by making a
truth table for each of them (this technique is called perfect induction). They are:

* Closure:A+B {01} and A[B {01}

 Associativity: (A+B)+C= A+ (B+ C) and(AB)[C = A[{B[T)

o Commutativity: A+ B =B+ A and A[B= B[A

« Distributivity: A+ (BLC)=(A+B)[A+C)andA[lB+C)=(AIB)+(ALT)
There are also four basic identities. They are:

« A+A=landA[A=0

* A+l=landAD=0

 A+0=AandAl=A

 A+A=AandA[A=A
Note that each of the axioms and identities have two forms: each form can be created by
switching the ORs and ANDs, and the 1s and 0s of the other form, called its “dual.”
These identities can also be proved by perfect induction. For example, the truth tables and

proof for the first identities are:

A | A
0
1

Al AR
0
0

o >l
R+

With these axioms and identities, we can prove the following theorems:

Absorption: X + XY= X and its dual X(X +Y) = X

Adsorption: X + XY = X+Y and its dual X(X +Y) = XY, and

Adjacency: XY+ XY =Y and its dual(X +Y)(X+Y) =Y
Proof of Absorption:

By distribution, X + XY= X(1+Y). 1 +Y=1. ThereforeX(1+Y)= X=X
(because Xl = X). Therefore, by transitivityX + XY= X.

By the distributive propertyX(X +Y) = XX+ XY = X+ XY (becaus&-X = X).
By the form of absorption just proved, + XY= X. Therefore, by transitivity,
X(X+Y) = X.

Proof of Adsorption:

By distribution, X + XY = (X +X)(X+Y). BecauseX + X =1,
(X+X)(X+Y)=1[X +Y) = X+Y (because X = X). Therefore, by transitivity,
X+XY=X+Y.

By distribution, X(X +Y) = X X+ XY =0+ XY (becauseX X= 0). Because
0+ A=A, 0+ XY =XY. Therefore, by transitivityX(T(+Y) = XY.

Proof of Adjacency:

By the distributive propertyXY + XY = (X + X)Y = 1LY (becauseX + X =1).
Because A = A, 10Y = Y. Therefore, by transitivityXY + XY =Y.

By the distributive property(X +Y)(X+Y) =(X X +Y=0+Y (because

X X=0). Because 0A=A, 0+Y =Y. Therefore, by transitivity(X + Y)(7(+ Y) =Y.

De Morgan’s Laws state:
A+B+C+..= AIBIC[. andABIC..=A+B+C +...
Proof of De Morgan’s Laws:

LetG =X +F andH = X[F whereF is some boolean function. Then
G [H = (X + F)[{XCF). By distribution and commutativity, this equatsXF + FF X.
And becauseA[A =0, this equalD[F + 0[X = 0. Also, G+ H = (X + F) + (X F). By
distribution and commutativity, this equglX + X + F) [{X +F +F). And because

A+A=1, this equaldl+F) [{X +1) =1. AssumeG # H. Then there exists some
ordered n-tuplet of the variables such BdiH = 1 orG + H = 0. But, by transitivity,
G [H =0 andG +H = 1. ThereforeG = H and, because of thi$] = G, proving both
laws.

Duality is a direct implication of De Morgan’s Laws. Given a functfong + h,
by De Morgan’s Laws§f = g_; [h. By recursively performing De Morgan’s Laws gand
h, all ORs switch to ANDs, and all values become complemented: 1s to Os and Os to 1s.
Of course, we can just rename all variables with their complements and have no loss of
generality, since each form of the function (it and its dual) are independent. Similarly, if
f =gCh, f =g+h, so all ANDs switch to ORs, all 1s to Os, and all Os to 1s.

When realizing a truth table, one must create a hardware circuit that takes in the
appropriate inputs and produces the correct outputs. It is important to have as small a
function as possible. Although it is always possible to arrive at an optimal solution solely

using boolean algebra, it is not suitable for use with a function that has many inputs.

However, there are other techniques that may not always arrive at the most optimal
solution, but are easier to use when dealing with large truth tables.

These techniques create a Sum of Products (SOP) solution. An SOP function
consists of many inputs being ANDed together, and then the ANDed terms being ORed
together. For example, an SOP function may look like: AB + CD + DEF. It consists of
three terms (AB, CD, and DEF) all being ORed together. Each instance of an input is
called a literal. In this expression, there are seven literals. A term is an ANDed group of
literals. In this expression, there are three terms.

Any truth table can be realized with an SOP solution. For example, take the

following truth table:

—

ROoORrROROR OO
OFrRORFrRrROORRIC

PRPRRPFRPROOOOI>
RPrRPOORrRRFROOW

We want OUT to be 1 only when a “1” is listed under OUT in the truth table. One of the
times this happens is when Ais 0, B is 0, and C is 0. Therefore, we need OUT to be 1
whenever Ais 0 AND B is 0 AND C is 0. An expression thataslyy when this is 1 is
A[BILC. When A, B, and C are all 0, this expression is 1. In addition, we want OUT to
be 1 whenever Ais 0, B is 0, and C is 1 (the second line). An expression toatys 1
when this is 1 isSA[B[T. So an expression that is 1 whedther (or both) of these cases
iIs1is:

ABLC + ABIC

Similarly, we can generate terms for the other two times OUT is 1, ultimately creating a
SOP expression that is 1 if and only if OUT is 1:
OUT = ALBIC + ABI[C+ A[BIC + A[B[C

This can be generalized into an algorithm: First, look for lines in the truth table
where OUT is 1. For each of these rows, AND together one literal for each input: an
uninverted, normal literal if the input is 1, and an inverted input if the input is 0. Then,
OR together all of these terms. An SOP solution like this is not at all reduced, and is
called a canonical SOP solution. Each of the ORed terms in a canonical solution is called
a minterm.

A technique to reduce an SOP solution is to use Karnaugh maps (K-maps). A
Karnaugh map is a pictorial representation of an SOP expression. It is a grid with one box
for each minterm. The boxes are arranged such that each box differs with an adjacent box

by exactly one literal. For example, the K-map for the previous truth table is:

& 00 | o1 | 11| 10

In this K-map, B and C label the columns and A labels the rows, as marked with a
“A\BC” in the top left hand corner. For the column labels, B is the literal on the left, and
C is the literal on the right. Notice that the columns are labeled 00, 01, 11, 10. In this
sequence, each number is different from its two surrounding numbers by exactly one bit.

Also, the numbers at the beginning and end of the sequence “wrap around:” they also

differ by exactly one bit. Each entry has exactly 3 adjacent entries: one for each input
variable.

Because of this, the minterms associated with adjacent boxes that contain 1s
(horizontally and vertically only; not diagonally) differ by one literal. Thus, we can apply
the adjacency theorem to two adjacent boxes and condense them to one smaller term. For
example, both the 000 and 001 boxes contain 1s. Therefore, by adjacency, we can say:

ABC +ABC = AB
minterms

Notice thatAB corresponds to 00, which are the only two literals that the boxes have in
common in the K-map. We group together the boxes in the K-map to denote that we are

applying adjacency to them. The map with all the groups circled is:

\Efi 0 | o1 | 11 10
A
0 1 ::;) 0 0

1 5 1 b 0 0 <ZE:

Each of these groups represents a term in the SOP cover. To find the term, we can

just look to see what literals all the boxes in each group have in common. The product of
these literals is a term in the SOP cover. Thus, the SOP cover represented here is:

AB+ AC+BC
However, theB C term is redundant. Graphically, that group overlaps the other two
groups, and groups two boxes that are already circled. In boolean algebra, the theorem

that states that this redundant term can be eliminated is the Law of Consensus.

10

The Law of Consensus states:
AB+AC +BC= AB+ AC

It can be proved using Shannon’s Expansion Theorem.

Shannon’s Expansion Theorem states:

f(xl,xz, iy .xn) =x 0 (l x2xn) +Z Df(O,xz, .. .>,<n)
wheref(x,,%,...,%) is a boolean function with parameters arx is a boolean variable.
Proof of Shannon’s Expansion Theorem:
The proof of Shannon’s Expansion Theorem is broken up into two cases: one case for
whenx, = 1 and one for whex = 0.
Casel1x,=1

Sincex, = 1, f(x, Xy ...X,) = f(1x,,...X,). Because = 1%X, 0 = 0X, and
X+0=X, f(1x,...x,) = f(1 %,,....x,) L+ £(0,%,,....x,) [D. Sincex, = 1,
f(LX,,...x) A+ f(0,Xy...%,) 0= f(1x,,...%)k + f(0,%,,....x.) X, . Therefore, by
transitivity, f(x,X,,...%,)= % F (1 %,,....x,) +% F(0,%,,...X,)-

Sincex, = 0, f(x,,X,,...x,)= f(0,X,,...x,). Becaus& = 11X, 0 = 0X, and
0+X=X f(0,%,...x,) = f(1,%,....x,) 0+ f(0,%,,....x,) . Sincex, = 0,
f(LX,,...x) O+ f(0,%,,...x,) A= f(1x,,...x)0k + f(0,%,,....x.) X, . Therefore, by

transitivity, f(x,X,,...%,) = % O (1 %,....x,) + X CF(0,X,,...X,)-
Proof of the Law of Consensus:
Now, with Shannon’s Expansion Theorem, the Law of Consensus can be proved.

Using Shannon’s Expansion Theorem BfA,B,C) = AB+ AC + BC, we get:

11

AB+ AC + BC= A(B+ BC) + A(C + CB). By Absorption, we can combine bdh+ BC
andC + CBto get: A(B+BC) + A(C + CB) = A[B + ALC. Therefore, by transitivity,

AB+ AC + BC= AB+ AC.

Using this on the K-map example, the cover from the three circles can be
simplified:
AB+AC+BC=AB+AC
This new cover has only two terms and four literals, much less than the original function
with four terms and twelve literals. Thus, there is a 50% reduction in the number of terms

and a 6%% reduction in the number of literals. The new cover is graphically represented

by two circles, namely the ones that are not completely overlapped:

icoo o1 | 11 | 10
A

YarnE
oo

Whenever a circle is completely overlapped (every box it contains is also contained in

another circle), the Law of Consensus can be applied. Thus, these circles do not even
have to be circled to generate a cover of the function.

Adjacency can be applied to grouping not only single boxes, but also entire
groups of boxes whose height and width are both powers of two. For example, take the

following K-map:

12

ABC\D 00 01 11 10
00 1 1 0 0
01 1 1 0 0
11 0 1 1 1
10 1 1 1 1

Circling every group of two boxes (and omitting those that can be eliminated by the Law

of Consensus), we get:

cD
AR 00

00

11 10

G

01

G

11

0

10

This produces a cover:

C_

¥as Sk

oF
a

ABC + ABC + ABD + ABC+ ABC + ABC

However, Adjacency can be applied to many of these terms (susB@s ABC).

Applying adjacency to all possible terms and repeating, the cover becomes:

AC + AD+ AC+ AB

13

Graphically, this is represented by combining adjacent circles:

CD
AR 00 01 11 10

ooﬁl 0 0
1

0

1

\

01

INaCE
Qo

This cover of the function has only four terms and eight literals, reduced from eleven

10

terms and forty-four literals. This is approximately a 64% reduction in terms and a 82%
reduction in literals.
Thus, the algorithm for using a K-map is:

» Circle areas of the K-map where each box in the area contains a 1. Each area’s height and
width (measured in number of boxes) must be a power of 2. Areas that are already covered
by circles do not need to be circled, although it may be beneficial to do so when grouping
areas that are not yet covered (since larger areas produce smaller terms).

» Each circle represents a term in the cover. Write down each term by ANDing the literals
that are the same in all boxes contained by the circle. Do not complement literals that
appear as a 1 in the column or row label and complement those that appear as a 0. Then, OR
together all the terms.

K-maps are an intuitive and easy way to reduce covers of functions with four or
less inputs, but they do not work well for functions with over four inputs. It is possible to

use a K-map with more than two dimensions to represent these functions, but they are

14

hard to deal with in three dimensions, and almost impossible to use in more than three.
For a function with more than four inputs, other methods must be used. One such method
is the Quine-McCluskey (Q-M) algorithms.

The Q-M algorithms are two algorithms that are used to minimize a cover of a
boolean function. The first algorithm generates a cover of prime implicants (implicants
(terms) that are fully reduced by adjacency). The second algorithm takes the prime
implicants from the first algorithm and eliminates those that are not needed.

In the first Q-M algorithm, the minterms of the function are listed by using a 1
when a literal is not complemented and a 0 when a literal is complemented. For example,

take the following 5-input function (1s are in bold to make it easier to see them):

15

ouT

16

The first step of the first Q-M algorithm yields the following list:

ABCDE
00100
00101
00110
00111
01100
10110
11100
11110

In the next part of the Q-M algorithm, the theorem of Adjacency is applied. To
apply it, look at the implicants and find implicants that differ by exactly one literal.
Combine the two implicants by putting an X (for don’t-care) in place of the literal they
differ by, and write the new implicant in the next column. Throw out any duplicate
implicants that may have been generated. Draw a box around any implicants that could
not be combined with other implicants. Repeat this process with the next column until no
more combinations are possible. The boxed implicants are the ones that could not be
combined: they are the prime implicants. In this example, the first algorithm produces:

ABCDE ABCDE ABCDE

01xx (duplicate)

11100 [X1100
11110 X110
*111x0

Therefore, the cover of the function using these prime implicants is:
ACD E +BCDE + BCDE + ACDE+ABCHE ABC
The second Q-M algorithm can further minimize a cover generated by the first
algorithm. The first part of the second algorithm is to make a table whose rows are

labeled by the prime implicants and whose columns are labeled by the minterms of the

17

function. When labeling the columns with the minterms, it is usually easier to write down
the base 10 number represented by the binary (base 2) number that the minterm

represents. In this case, E would be the value in the 1's place, and A would be the value
in the 16’s place. Then, put a check mark in each box where the minterm of that column

is covered by the implicant of that row. The table for this function is:

4 5 6 7 12 22 28 30
0X100 i v

X0110 Vv V

X1100 v v

1X110 Vv Vv
111X0 Vv Vv
001XX Vv Vv Vv Vv

The next part of the algorithm is to find all columns that contain exactly one
check (all columns contain at least one check). Draw a line across the row that this check
is in, and circle the minterms of all the checks that this line intersects to signify that that
minterm has been covered. Do not do this process for any circled columns. After doing

this, the table is:

©) (5 ©) @ 12 22 28 30

0X100 i v
X0110 Vv Vv
X1100 Vv Vv
1X110 V Vv
111X0 Vv Vv
408D v i v v
v

18

At this point, 12, 22, 28, and 30 are uncovered. Since they each have more than
one check in their column, we must choose what checks to take first. Our choice will
affect the number of implicants in our cover. There is always a way to find the minimum
cover with the second algoritinHowever, there are many intricacies involved in
finding an algorithm to always find the correct choices. For example, take the following
diagram with the dots representing minterms—which may be spread out in a random,
nonconsecutive order in the list of minterms—and the circles representing prime

implicants:

The essential prime implicants are the dark circles. The lighter circles are nonessential
and can be thrown away. A perfect Q-M algorithm would pick the dark circles and not
the light circles. Also, this picture is only in two dimensions. In a normal situation, these
minterms may be spread out over many more dimensions, increasing the complexity of
the problem.

| was not able to find the perfect second Q-M algorithm that always finds the
minimum cover. My Q-M algorithm may choose circle 1 and then, because the minterms
in this diagram may not be in same order as they are in the algorithm’s list of minterms,
choose circle 4 instead of circle 3. The best second Q-M algorithm | found is the

following (on the next page):

" MacEspresso 1.0, a port of the Espresso algorithm by Mikhail Fridberg, was able to find a more minimal
cover when running with the “~Dexact” parameter.

19

1. Pick the column with the least number of checks in it. If there is a tie, pick the
first one.

2. In this column, pick the check whose row will get us the greatest number of
uncoveredninterms.

Using this algorithm on the above table yields:

@ 6 66 0O & o © ©

0X100 Vv \
X0110 v

EWaYal / /
ATIOU \"
1110 / /
IO v \'/
111X0 Vv Vv
PR / / / /
00ITXX vV V v vV

v v v

Now, all the minterms are circled, so they are all covered. The algorithm stops,

and we are left with three implicants in our cover:

BCDE + ACDE + ABC
This is a 62.5% reduction in the number of terms and a 72.5% reduction in the number of
literals.

This process may be tedious to go through by hand, especially if there are many
inputs. However, because of the algorithmic, recursive nature of these algorithms, they
are fit to be programmed into a computer. | programmed them in Java (see Appendix A
for source code). | implemented the first Q-M algorithm using a 3-dimensional
vector/array combination. In this case, a “vector” is a computer vector, not a math vector:

it is an array without a preset, limited size. The first vector holds the different “levels”

20

(iterations) of the first Q-M algorithm. Each element in the first vector is a vector of
arrays. These arrays in the third and last level of the structure are the terms. Their size is
the number of inputs, and they hold the literals. For the literals, | store a 0 for 0, a 1 for 1,
and a 2 for don’t-care (“X”). The following picture is a graphical representation of this

data structure:

7y A

Vector of “levels” 1 C

of the algorithm ¢ 1/7 f 1
C OA 2

o el Donld 1
o— » ¢! O O O
] 27/ 72 2

2 7 T
[] 2 C 2 Arrays of literals
N C 1 2 (terms)

Vector of terms
of “level” of
the algorithm

Note that no 2s are in any of the implicants in the first level, as no terms have yet
been combined by adjacency. Each implicant in the second level contains exactly one 2,
since exactly one iteration of the algorithm has been done, yielding one don’t-care per
new implicant. Each implicant in the third level contains two 2s, and so on. The first level
(the canonical cover) is read in from a file. Each level after the first is created by
performing the first Q-M algorithm on the previous level.

The implementation of the first Q-M algorithm consists of four nested for loops.

The first (outer) loop goes through each level. The second loop goes through each term.

21

The third loop goes through all the terms that have not already been compared with that
term (all the ones below it), and the fourth loop compares each literal of the two terms to
see if there is exactly one difference in literals. If there is exactly one difference, the two
terms are combined by adjacency: a new term with a 2 in the different literal’s place and
all other literals the same as those in the two compared terms is put into the next level.
Also, the two compared terms’ indices are put into a set of non-primes. After each term
has been compared, the set of non-primes is used to find the terms that are prime. The
prime terms are added to the set of primes, which is the final result of the algorithm.

Pseudocode for this is on the next page (NUMINPUTS is the number of inputs).

22

Function QM1(levels) returns primes

put { } (empty set) intoprimes
for each leveleveldo
irredundantevel (remove duplicates fromevel)
put { } (empty set) intononprimes
for every termermin levelfrom 1to the size ofevel-1do
for every termcomptermin levelfrom term+ 1to the size ofeveldo
put —1into differentLiteralas a flag
for every literalliteral from 1to NUMINPUTSdo
if literal literal of term# literal literal of compternthen
if differentLiteral=—1then
(there was no previous difference)
put literal into differentLiteral
else(there was a previous difference)
put —1 intodifferentLiteralas a flag
break (get out of this comparison loop)
end if
end if
end for of literal
if differentLiteral# —1then (there was exactly one difference)
add termto nonprimes
add compternto nonprimes
add termwith 2 in literaldifferentLiteralto levellevel + 1
end for of compterm
end for of term
if the size ohonprimes> Othen
add all terms not imonprimego primes
else
break (get out of loop for levels)
end if

end for of level

return primes

23

24

Because of its four nested loops, the first Q-M algorithm takes a long time to
execute. For just one iteration of the outer loop (for only one level), there are
approximatelyL iterations of theéermloop, and each of those has-termiterations of
thecomptermioop, where. is the size of the level. Thus, for each level, the total number

of times thditeral loop is called is approximately:

L+(L-1)+(L-2)+...+(L-L)= i(L—k)
Simplifying this,

L+1 L+1 L+1 L+1 + +
(L 1)2(L 2, e

Z(L k) = Z(L k+1) = ZL ;le >+ L-

>+3L+2 21°+4L+2-1°-3L-2 L*+L
2 2

=2 +2L+1-

Then, for each of these iterations, there is an iteration ditéhal loop. Theliteral loop

always has NUMINPUTS iterations. SONf= NUMINPUTS, each level takes about

%‘—E\Iﬁ O(L’N) time. This is a very long time considering that the number of

inputs (N) and the number of terms in a levie) €an both commonly be in the hundreds.

To implement the second Q-M algorithm, | made a 2-dimensional array for the
table of checks and a 1-dimensional array to store which minterms are “circled.” | then
wrote several different versions of the algorithm, and put the best one in my final version.
The best one is:

Pick the column with the least number of checks in it. If there is a tie, pick the first one.

In this column, pick the check whose row will get us the greatest numbecao¥ered

minterms.

Pseudocode for this is on the next page.

25

Function QM2(mintermsimplicants) returns essentialPrimes

put a 2-dimensional arraypto checkTablga value of false indicates there
is no check. The first dimension is the minterms (columns) and the second
dimension is the implicants (rows))
for every implicanimplicantof implicantsdo
for every minternmintermof mintermsdo
if implicantimplies (covers)nintermthen
put true into checkTablgminternj[implican{
else
put false into checkTablgminterni[implicani
end if
end for of minterm
end for of implicant
put { } (empty set)into essentialPrimes
put a 1-dimensional array of dlllseinto mintermsDonéto keep track of circles)
while not every index imintermsDon&ontaingrue do
put the column otheckTablavith the least number of checks imonChecksCol
put the row with a check iminChecksCalhat contains the greatest number of
checks in columns not mintermsDonento maxChecksRow
put true into every index omintermsDonehat corresponds to a column with a
check inmaxChecksRow
add implicantmaxChecksRoto essentialPrimes
end while

return essentialPrimes

In the worst case, the second Q-M algorithm can take longer to run than the first
algorithm, but normally it takes much shorter. In the worst case, meketkTablaakes
aboutO(I * M * N) time, wherd is the number of prime implicantdl, is the number of

minterms, andN is the number of inputs. In the best case, it takes &outM) time.

26

FindingminChecksCoalakes aboudD(M * 1) time at first, but then, as more inputs are
covered, it decreases. FindimpxChecksRowakes about the same time. In the worst
case scenario, where the prime implicants are the minterms, nthidokjT able
minChecksColandmaxChecksRowll take the greatest amount of time. Worse still, the
amount of time to finaninChecksCoandmaxChecksRow each iteration of the while
loop only decreases by 1 each time, since only 1 minterm gets covered by the chosen
implicant. This makes the total amount of time to fincdv@hChecksCd values in all

the iterations of the while loop about:
M
M*D+M*I-1D)+M*-2)+M*|-3)+...+M*|-M) = Z (M* 1 -k
k=0

Using the fact that= M (because it's the worst case) and simplifying,

M*I— (|v| —k+1)= (M) k31
2 _ 2 _ _
a2 MEDMA2) s 2MP M -3M -2+ 2M 42
2 2
2 _
_ s MM
2

This is also about the amount of time it takes to findnakChecksRow values.

Therefore, in the worst case, the second Q-M algorithm takes about

o(2M® + M? =M + M?N) = O(M® + M?N) time to run (thé/’N is from making

checkTablg However, in a normal scenario, there are much fewer implicants than there
are minterms. Also, there are not normally+ 1 iterations of the while loop, since most

of the implicants cover more than one minterm. This makes the second algorithm

normally run in just more than a tenth of the time taken by the first algorithm.

27

Simplify is another algorithm for minimizing a SOP functiohprogrammed it in
Java (see Appendix B for source code). It does not reduce a given function as much as the
Q-M algorithms, but it runs in much less time. Simplify uses Shannon’s Expansion
Theorem to break up the given function into functions that are can be easily reduced, and

then merges the results. Shannon’s Expansion Theorem (on page 10) states:

f (X0 X0 %) = X F (1 %,.00%) +% F(0,%,, ...,
wheref is a boolean function with inputs. This can be efficiently turned into computer
code by making use of the cofactor of a function with respect to a variable.
The cofactor operation makes use of matrix representations of implicants and
SOP functions. An implicant can be represented by a one-dimensional matrix of Os, 1s,
and 2s. Tha™ place in the matrix is the state of thitliteral of the implicant: O for
complemented, 1 for uncomplemented, and 2 for don’t-care (the variable does not appear
in the implicant). For example, the implicaalqlxzf4 is representedas[1 1 2 0]. A set of
implicants (a cover of a SOP function) can be represented by a two-dimensional matrix
whose rows are the representations of the implicants that collectively cover the function.
For example, the functiom = x,x, X, + X, X, + X,X,X,X, iS represented as:
1 2 OE
f=2 1 0 2
11
The cofactor of a SOP functidnwith respect to an implicant f,, is defined

such that for every column indebetween 1 and the number of inputs, inclusive, and

every row inde) between 1 and the number of rows,imclusive:

28

Oif (f'=0andx = 1) or (f'= 1 andx = 0) (Case 1)

(f) =< 2(don't-care)ifx #2 and Case lisfalse ~ (Case 2)
flifx=2 (Case 3)

For example,f ' is the number in thé' column and™ row off. It is thei" literal of thej™"

implicant off. x, is number in th&" column (place) ok. It is thei" literal ofx. The

cofactor operation forms a functi@nwhich has columns ang or less rows. If Case 1
ever happens((x)ij is), then (fx)j—thejth row of f —is deleted, and th& row would

become thej¢1)" row, the [+1)" row the {+2)" row, and so on. For example, the
cofactor of the following functiohwith respect to the following implicantis the

following functionf,;

M 2 2
=0
ma 2 2

B-R

The cofactor of a functiohwith respect to a variableof f is defined as the
cofactor off with respect to an “implicant” whose literals are all 2s except faif"the

literal, whose value i%. Effectively, it produces a functiofy whose implicants all have

a 2 in thd" literal and the literals of all the implicantsfithat have a value of 2 &rin
theiri™ literal in the other literals. For example, using the fundtisam the previous

example, f is found by taking the cofactor bvith respect to the implicant

representing the IiteraT3:

29

412 0
[—

f=2 10 Z, x=[220 7, f
11

q i:

Shannon’s Expansion Theorem can be stated as:
f=xf + Zf2

for anyi between 1 and the number of inputd,ahclusive. This is because the each of
the cofactors of do not contain the implicants that would evaluate to 0O if an algebraic
application of Shannon’s Expansion Theorem were used. The cofactor operation removes
those implicants with its Case 1. In addition, the cofactor operation turitslitieeal of
each implicant into 2 (don’t-care). This corresponds to algebraically pluggingina 1 or 0
into x;, thus removing it from each term. Becayss the variable “splittingf, x is called
the splitting variable.

Simplify makes use of Shannon’s Expansion Theorem to recursively break up the
given functionf until it comes across a unate function. A unate function is a function that
IS monotone increasing or monotone decreasing in each of its variables. A function is
monotone increasing in a varialyef changingx from 0 to 1 makes the output of the
function 1 (although the output of the function need not be 0 beforehand). A function is
monotone decreasing in a variakl& changingx, from a 0 to a 1 makes the output of the
function 0 (although the output of the function need not be 1 beforehand). Note that this
says nothing about what happens is changed from a 1 to a 0. Also, a hon-unate
function is called binate.

A cover of a function is unate if th& literal of every implicant of the cover of the
functionisa2oral,ora?2oraQ0. Thatis, if each column in the matrix representation of

the cover of the function contains only 1s and 2s or only Os and 2s. For example, the

30

cover of the following functiot defined by its matrix representation is unate, and the

cover of the following functio® is not unate:

A 2 0 I m 2 1 1
0 i 0 C
002 20 T
U= 0 0 T B=2 0 1 2
422 % 0112
H o 2 & B oo &

The cover oB is binate because it§"and & columns contain both 1s and Os. The cover

of U is unate because no columntbtontains both 1s and Os. If a cover of a function is
unate, then the function must be unate. However, if a cover is not unate, it is possible that
the function is unate. For example, the following functas unate, but its cover is not:

1 1 o
=0 LV
2 0 2

=
In Simplify, however, we only deal with covers of functions, and it would not be
beneficial to the algorithm to check to see if the function is unate if the cover is not.
Therefore, from this point forward in the paper, | will not differentiate between unate
covers and unate functions.

In Simplify, a unate function is simplified by removing the implicants of the
function that are covered by other implicants of the function. Since each column of the
unate function can only contain either 1s and 2s or Os and 2s, it is more likely that this

simplification can happen than if the function were binate. For example, the following

functionF gets reduced to the functid#:

31

1 0 2 Z4
0 L
@ 0 1 1I°
F—El 0 2 %isreducedtoF'—% 02 ZE
R21 % 2212
321k
@ 0 1 X

Note that an implicard covers another implicatif and only if each literal of ais a 2
or equals thé@" literal of b. That is, the™ literal of b cannot be a 1 when tfif&literal ofa
is a 0, a 0 when thé# literal ofais a 1, or a 2 when thé literal ofa is not 2. If it were,
thenb would not be covered s The following is pseudocode for Unate Simplify:
Function unate_simplifyf) returns f' (f is a cover of a function)

put finto f’
for every implicanimplicantof f from 1to the number of implicants i 1do
for every implicantomplmplicanof f from the number of implicants indown
to the index ofimplicant+ 1do
if implicantcontainsccomplimplicanthen
removecomplmplicanfrom f'
end if
end for of complmplicant
end for of implicant

return f'

After Simplify simplifies the unate functions, it merges the functions back
together. The Merge algorithm puts together the two functions formed by performing
Shannon’s Expansion Theorem on a function to form a new function logically equivalent
to the original function. Merge not only splices the two functions into one function, but
also performs the AND operation needed on each of the functions to complete Shannon’s

Expansion Theorem. However, if Merge just performed the AND operation and put the

32

two resulting functions together (effectively ORing them), many redundancies would
result. Thus, before Merge performs the AND and OR operations, it checks to see if it
can take out any redundancies.

Merge takes three parameteis= f, , h, = fZ’ andsplittingVar=i (the index of

the splitting variable). It returns a functibrereated by merginl, andh,. To check for
redundancies, Merge first checks to see if any implicarts arfidh, are identical. Those
that are identical are put into a set of implicdgtand removed frorh, andh,. Then,
Merge checks to see if any implicantsjrcover any of those ih,, and vice versa.
Implicants inh, that are covered Wy, are removed frorh, and put intc,. Implicants in

h, that are covered Wy, are removed frorh, and put intdh,. Because the implicants in
h, are those that were covered by blotlandh,, they should makk = 1 no mattek; is.
Thus, they are not ANDed with the splitting variable. Since the implicartssbiould
makeh = 1 only when the splitting variable is 1, they should be ANDed xyitmd
because the implicants bf should makén = 1 only when the splitting variable is 0, they

should be ANDed with . Thereforeh = h, +xh, + xh,. Pseudocode for Merge is on

the next page.

33

Function mergd h,, h,, splittingVar) returns h

put { } (empty set) intoh,
for every implicant of h, do
for every implicant of h; do
if i =1then
addito h,
removei from h,
removel from h;
end if
end for of |
end for of i
for every implicant of h, do
for every implicant of h, do
if i coverd then
add | to h,
removel from h,
else ifl covers then
additoh,
removei from h,
end if
end for of |

end for of i

pUt h2 + XsplittingVar Eﬁl + XsplittingVar Eh) intO h

return h

Because Simplify breaks a function down into unate functions, we want to make
each of the two functions resulting from the application of Shannon’s Expansion
Theorem as “unate” as possible. Thus, we choose the splitting variable to be the “most”

binate variable. This is done by the algorithm Binate Select.

34

Binate Select chooses the index of the splitting variabpldtingVar, such that
the column in the matrix representatiorf abrresponding to the variablgngvar
contains both 1s and Os and the greatest number of 1s and Os (the greatest sum of the
number of 1s and the number of 0s). This is done by the following pseudocode:

Function binate_sele¢tf) returns splittingVar
put a 1-dimensional arrapto numZerognumZerof] holds the number of zeros in the
K" column of the matrix representationfpf
put a 1-dimensional arrapto numOnegnumOnNefK] holds the number of ones in the
K" column of the matrix representationfpf
for each columrol of the matrix representation bflo
put the number of Os iool into numZerofcol]
put the number of 1s iool into numOnefcol]
end for of col
put { } (empty set)into binateColumns
for each colummol of the matrix representation bflo
if numZerofcol] > 0 and numOnefgcol] > Othen
there are both 1s and Osaal, socol is binate:
add col to binateColumns
end if
end for of col
put —1linto splittingVaras an initial value and flag sayihg unate
put 0into maxValas an initial value of the sum of Os and 1s in a column
for each columrol of the matrix representation bflo
if numZerofcol] + numOnefcol] > maxValand col O binateColumnshen
put numZerofcol] + numOnegol] into maxVal
put col into splittingVar (that is, the index afol)
end if
end for of col

return splittingVar

35

Simplify breaks down its given functidrusing the following line of pseudocode:

merge(simplify(f), smplify(f), splittingVar)

r— Xsplitingvar
It does this recursively until it encounters a unate function. Then, iucelte simplify

on the unate function. Note that this is, in effect, simply applying Shannon’s Expansion
Theorem. That is why the function generated by Simplify is equivalent to the given
function. Pseudocode for Simplify is the following:

Function simplify(f) returns f’
if fis unatethen

return unate_simplify(f)

else
put binate select(f) into splittingVar
if (splittingVar= -1)then
return unate_simplify(f)
else
put merge(simplify(fxsp"mw), simplify(f,_), splittingVan into '
if the number of implicants i< the number of implicants ifi’ then
return f
else
return f’
end if
end if
end if

For an example, let us call Simplify on the following function:

Qo0 1
] C
;Do
411
H 1 £

36

First, Simplify callsbinate _selectwhich selects column 1 as the splitting
variable. Simplify then cofactofswvith respect to the splitting variable and to the

complement of the splitting variable. This breakd:up

= = O O

HOHDgOE
R

%=[0 2 7 x=[1 2 73

[2 01

Simplify is then recursively called on each of these “subfunctions.” Because the function
on the left is unataynate _simplifyis called on it. Since this subfunction only has one
implicant,unate_simplifycannot simplify it further. For the right subfunction, column 2

is selected as the splitting variable, and the process repeats recursively:

70k
2 1 1L
17

2

&[27\‘[214

[2 2 1] D

Because both the left and right subfunctions are unatge_simplifyis called on each of

them. Since there is only one implicant in the left subfunctioate_simplifycannot

37

simplify it further. In the right subfunction, [2 2 2] covers [2 2 1]usate_simplify
removes [2 2 1].

Then,mergeis called to merge together the left branch and the right branch,
[2 2 1] and [2 2 2], respectively. Because [2 2 2] contains [2 2 1], [2 2 1] is pu,into
and removed frorh,, and is not ANDed with the splitting variable. Thogergeyields:

[2 2 1] [2 2 7

\,

Ll L
2 1
This is then merged with the subfunction obtained by cofactbrinth respect to

x, ([2 0 1] is not ANDed withx, because it is covered in [2 2 1]):

[ZK i
aao’l%/
D.Zl[
1

This is the final result by Simplify. It has three terms and six literals: a 25% reduction in
terms and a 50% reduction in literals.

Because Simplify breaks up a function into easy-to-reduce unate functions with a
binary recursion tree, it is very efficient in terms of time. However, it is not guaranteed to
even come up with a set of prime implicants, much less find a minimum cover. To

compare Q-M and Simplify, | created a program that generated random functions by

38

making lists of random minterms. | then ran each on a variety of functions under
controlled conditions The results are shown in the following charts (on the next four
pages). The reduction results are measured in terms instead of literals because these
algorithms are used for large functions, and the hardware used to realize large functions,
programmable logic arrays (PLAS), is structured in such a way that it does not matter

how many literals are in each term, but it does matter how many terms there are.

" PowerTower 180 with 64MB RAM running Mac OS 8.5.1 and MRJ 2.0. 5MB of RAM was allocated
each to Simplify and Q-M as applications generated by JBindery 2.0. Each ran with extensions off and no
background applications (besides the Finder) running. Three consecutive trials were taken for each
combination of minterms. Times are averages; other results were constant.

Reductonfor7 nputs

E 39
C 101
[T
=]
=
b N

59
1 B Sin py
5 QM
E
= 28
=

0 10 20 30 40
Num berofTem snh Resut
PercentReductonfor7 hputs

T} 6139%
E 101 7426%
[
C=
=
E 4407%
W= 59
= B Sin pl/
5 QM
=
E
= 28
F

000% 2000% 4000% 6000% 8000%

PercentReducton
Tm efor7 nputs
g
- 101
[T
=
=
=
w= 59
= B Sim pl/
5 oQwM
E
a 28
=
Tm e (seconds)

39

Reductonfor8 nputs

il 66
E 210
]
C=]
=
T 67
% 155
= B Sm ply
5 B QM
= 31
= 50
E 30
0 20 40 60 80
Num berofTem sn Resut
PercentReductonfor8 hputs
I 0
E 210 8048%
o
et
£
E
155
= y B Sin py
5 moMm
o
E
= 50
=
000% 2000% 4000% 6000% 8000% 10000%
PercentReducton
Tm efor8 nputs
0]
E 210 B778
u
=
£
r
%= 155
= B Sin pl/
5 B QM
E
5 50
=
0 10 20 30 40
Tm e (seconds)

40

Reductonfor9 nputs

E
E 413
o
F=
E
r 114

265
1 B Sin py
g mOoM
E
5 114
S

0 50 100 150
Num berofTem sh Resut
PercentReductonfor9 hputs

n
E 413 8305%
o
et
£
E

265
= 6377% B Sin oy
5 oM
ol
E
g 114 4386%

000% 2000% 4000% 6000% 8000% 10000%
PercentReducton
Tm efor9 nputs

E
C 413 884
o
F=
E
o

265
1 B Sin py
5 QM
E
5 114
S

0 20 40 60 80 100
Tim e (seconds)

41

Reductonforl O nputs

W 262
E 823
1]
=
£
r 257
w 500 .
= B Sin pl/
5 moMm
E
3 119
]
300
Num berofTem sn Resut
PercentReductonforl0 hputs

0]
E 823 8360%
- 1]
C=
=
E
v 500 6580% B Sin ply
5 moM
'E 2185%
= 119
=

000% 2000% 4000% 6000% 8000% 10000%

PercentReducton
Tm eforl0 nputs

1
E 823 3141273
1]
E=]
£
=

500
s B Sin py
5 moMm
E
3 119
]

50 100

Tm e(seconds)

42

43

The Espresso-Il algorithm performs the following steps:

1. Complement: Compute the complement of the given function (it will be
needed in the rest of the algorithm).

2. Expand: Make each implicant of the function contain as many don’t-cares as
possible without covering the complement of the function.

3. Essential Primes: Find the essential primes and make a list of them.

4. Irredundant: Remove redundancies from the current cover

5. Reduce: Put 1s and 0s back into the 2s of the expanded implicants. The
benefit of this is that implicants with fewer 2s can be expanded in more
directions when the loop is iterated again.

6. Repeat steps 2-5 until there is no improvement.

7. Lastgasp: Try the same process in a slightly different way. If there is
improvement, repeat.

8. Makesparse: After the algorithm has completed, different parts of the function
may be in different places. Put together the function and simplify it as much
as possiblé.

Unfortunately, this is a very intricate and technical algorithm, and | did not have enough
time to research it past the Expand step.

In the amount of time | had to complete this paper, | was not able to accomplish
several things. | was not able to explore the second Q-M algorithm enough to find the
algorithm that guarantees a minimum cover. Also, | was not able to find out enough
about the Espresso algorithm in order to program it. If | did have enough time to program

the Espresso algorithm, | would compare it with the Q-M and the Simplify algorithms.

44

Since | was able to obtain a program of Espresso written in native Macintosh code (this
makes it faster than programs in Java), MacEspresso 1.0, | am able to tell that Espresso
normally produces results with more literals than the results of the Q-M algorithms, and
fewer literals than the results of the Simplify algorithm. However, | cannot tell how it
compares in terms of time. | believe that it takes significantly less time than the Q-M

algorithms and more time than Simplify.

45

Notes

' Proofs of Absorption and Adsorption from Jerry D. DaniBigjtal Design from Zero to
One New York: John Wiley & Sons, Inc., 1996 p. 103

" Digital Design from Zero to Ong. 178

i Simplify adapted from Robert K. Brayton, Gary D. Hachtel, Curtis T. McMullen,
Alberto L. Sangiovanni-Vincentielll.ogic Minimization Algorithms for VLSI Synthesis
Boston: Kluwer Academic Publishers, 1997

| ogic Minimization Algorithms for VLSI Synthepis38

¥ Logic Minimization Algorithms for VLSI Synthepisl3

Gl

Glossary

absorption: the theorem stating + XY= X and X(X +Y) = X
adjacency the theorem statingY + XY = Y and (X + Y)(T(+ Y) =Y

adsorption: the theorem statin + XY = X +Y and X(X +Y) = XY

algebra, boolean a way to manipulate boolean expressions using theorems, axioms, and
definitions.

binate function: a function that is not unate. This can also be used to mean a cover of a
function that is not unate.

canonical cover/solution the SOP cover of a function that contains only minterms, and
thus has not at all been reduced.

cofactor: the operation used by Simplify to break up and merge a function. See pp. 26-
28.

cube a one-dimensional matrix in the form of an implicant.

De Morgan’s Laws two laws used to evaluate the complement of a function. They state
A+B+C+..= AIBIC[. andABIC.=A+B+C+...

duality : the property of identities stating that the dual of any identity is the identity with
all ANDs switched to ORs, ORs switched to ANDs, 1s switched to Os, and 0s
switched to 1s.

Espresso algorithm an algorithm that minimizes SOP functions.

essential prime implicant a prime implicant that the cover of a function must contain in

order to cover the function

G2

function, boolean a function that takes boolean variables as inputs and creates a boolean
output dependant on the inputs

implicant: an ANDed string of literals. It is a term in an SOP function.

Karnaugh map (K-map): a graphical representation of a function that makes it easy to
apply adjacency

Law of Consensusthe theorem stating\B+ AC + BC= AB+ AC. It is used to eliminate
implicants in a Karnaugh map.

literal : an instance of a boolean variable. It may be the variable complemented,
uncomplemented, or ignored (don’t-care). In matrix representations or the Q-M
algorithm, it may have a value of 0, 1, or 2/X, corresponding to complemented,
uncomplemented, and don’t-care, respectively.

matrix representation of a function or implicant: The rows of a two-dimensional
matrix representation of a function are the implicants of the function. The
columns of a one-dimensional matrix representation of an implicant are the
literals of the implicant.

minterm: an implicant that contains exactly one literal for each variable. It is not at all
simplified.

monotone decreasingA function is monotone decreasing in a variable if changing the
value of the variable from 0 to 1 results in the output of the function being O.

monotone increasing A function is monotone increasing in a variable if changing the
value of the variable from 0 to 1 results in the output of the function being 1.

prime implicant: an implicant that cannot be further reduced by adjacency

G3

primitive function : a function that takes one or two parameters and returns one output.
The most common primitive functions are NOT, AND, OR, XOR, NAND, NOR,
and XNOR.

Quine-McCluskey (Q-M) algorithms: two algorithms that minimize a boolean function.
The first algorithm finds all prime implicants, and the second algorithm eliminates
nonessential prime implicants.

Shannon’s Expansion Theoremthe theorem stating
f (X, X0 %) = X (1 %,,....%,) +% [F(0,%,,...x,). It also has another, logically
equivalent form that can only be applied to SOP functidns:x f, + Z fi' Itis

used, among other things, to break up and merge a function in the Simplify
algorithm.

Simplify algorithm : an algorithm that minimizes a boolean function. It does this by
recursively breaking up a function with Shannon’s Expansion Theorem until it is
easy to simplify.

sum of products (SOP) a form of a function consisting of two levels of operations:
First, combinations of literals are ANDed together, forming terms. Then, these
terms are ORed together. All boolean functions can be expressed as SOP
functions.

unate function: a function that is either monotone increasing or monotone decreasing in
all of its variables.

variable, boolean a variable that can be in one of two states: 0 or 1.

Bibliography

Brayton, Robert K., Hachtel, Gary D., McMullen, Curtis T., Sangiovanni-Vincentelli,
Alberto L., Logic Minimization Algorithms for VLSI Syntheds®ston: Kluwer
Academic Publishers, 1997

Daniels, Jerry D Digital Design from Zero to OnéNew York: John Wiley & Sons, Inc.,
1996

Fridberg, Mikhail, MacEspresso 1.0, 1996 [computer program

Appendix A

Java Source Code of the Qune-McCluskey Algorithms

// global variables:
int NUMINPUTS; // the number of inputs
int NUMTERMS; // the number of minterms

/*
* irredundant removes duplicate terms from the parameter “terms”
/*
void irredundant(Vector terms) {
for (int term = terms.size() - 1; term > O; term--) {
for (int check = term - 1; check >= 0; check--) {
boolean duplicate = true;
for (int literalindex = 0; literalindex < NUMINPUTS; literallndex++) {
if (((int[]) terms.elementAt(term))[literalindex]
I= ((int[]) terms.elementAt(check))[literallndex]) {
/l a literal is different: term and check are not duplicates
duplicate = false;
break;
}
}
if (duplicate) {
terms.removeElementAt(term);
break;

}

/*

* The first Quine-McCluskey algorithm:

* data is a vector containing the first level

* of terms (the minterms). The structure of

* data is a 3-dimensional vector/array combination

SWIYIIOB[Y ASYSN|DIN-aUNQ ayj JO 9p0) 92IN0S BAR[

V Xipuaddy

Al

v

* where the first “tier” is a vector of terms.
* Each term in the first “tier” holds an array of literals.
* QM1 returns a vector of terms containing arrays of literals.
*/
Vector QM1(Vector data) {
/l initialize variables:
Il initialize variables
int diff = -1; /* the index of the literal that the terms being compared have a difference at.
* diff is -1 if there is no difference.
*
boolean termlsPrime = false; // is the term “term” (loop index) prime?
int nextLevelTermCount; /* the number of terms in the next “level” of data - 1.
* corresponds to the index of the last term in the next level.
*/
Vector primes = new Vector(); // a vector containing all prime implicants. It will be returned at the end.

[* repeat for each level:
* start on the first level to create the second level, then
* go to the second level to create the third level, and so on.
* when there is no more reduction possible, break.
*/
for (int level = 0; level <= NUMINPUTS; level++) {
Il initialize variables:
nextLevelTermCount = -1;
irredundant((Vector) data.elementAt(level)); // remove duplicates from the list of terms
data.addElement(new Vector()); // initialize the next level
Hashtable nonprimes = new Hashtable(); /* a hashtable containing the indeces of the terms
* that are not prime. It will be used to find
* the terms that are prime.
*/
/I 2 nested loops to compare a term term with a term compterm to see if they can be combined
for (int term = 0; term < ((Vector) data.elementAt(level)).size() - 1; term++) {
for (int compterm = term + 1; compterm < ((Vector) data.elementAt(level)).size(); compterm++) {
/I check literals in term and compterm to ultimately see if the terms can be combined
for (int literal = 0; literal < NUMINPUTS,; literal++) {

[AY

if (((int]]) ((Vector) data.elementAt(level)).elementAt(term))[literal]
1= ((int]]) ((Vector) data.elementAt(level)).elementAt(compterm))[literal]) {
I there is a difference between literals
if (diff == -1) { //there was no previous difference

diff = literal,
}
else { /lthere was a previous difference

diff = -1;

break; //there is more than one difference: get out of this comparison
}

}

}I end of literal for loop

if (diff = -1) { // term and compterm can be combined
nonprimes.put(new Integer(term), new Integer(term)); // term is not prime
nonprimes.put(new Integer(compterm), new Integer(term)); // compterm is not prime

/l initialize a space to put the combined term in the next level

((Vector) data.elementAt(level + 1)).addElement(new intfNUMINPUTS]);
nextLevelTermCount++; // we are adding a term to the next level
System.arraycopy((int[]) ((Vector) data.elementAt(level)).elementAt(term), 0,

(int[]) ((Vector) data.elementAt(level + 1)).elementAt(nextLevelTermCount), O,

NUMINPUTYS);
/I the different literal is a don’t care:
((int]]) ((Vector) data.elementAt(level + 1)).elementAt(nextLevelTermCount))[diff] = 2;
diff = -1; // initialize diff for the next comparison
}
Y end of compterm loop
Y end of term loop

/I check to see if there were any primes:
for (inti=0;i< ((Vector) data.elementAt(level)).size(); i++) {
if (Inonprimes.containsKey(new Integer(i))) {
[l the i_th term of this level is prime
primes.addElement(new intfNUMINPUTS]);
System.arraycopy((int[]) ((Vector) data.elementAt(level)).elementAt(i), O,
(int[]) primes.elementAt(primes.size()-1), 0, NUMINPUTS);

A3

ev

}

}

if (nonprimes.size() ==0) {
/I there was no reduction in this level
break;

}

Y end of level loop

return primes;

/*
* The second Quine-McCluskey algorithm
* minterms is a vector containing the minterms.
* Each minterm is an array of 0 to NUMINPUTS - 1 literals.
* implicants is a vector containing the implicants.
* Each implicant is an array of 0 to NUMINPUTS - 1 literals.
*/
Vector QM2(Vector minterms, Vector implicants) {
if (implicants.size() >1){
[* Create a 2D array “checkMap” containing the checks in the table.
* The first index is the minterm (column) and the second is the implicant (row)
*
boolean checkMap[][] = new boolean[minterms.size()][implicants.size()];
Il put "checks" into checkMap: checks have a value of true
for (int implicant = 0; implicant < implicants.size(); implicant++) {
for (int minterm = 0; minterm < minterms.size(); minterm++) {
boolean impliesMinterm = true; // does the implicant imply the minterm? Init. to true.
for (int literal = 0; literal < NUMINPUTS,; literal++) {
if (1((((int[]) implicants.elementAt(implicant))[literal]
== ((int[]) minterms.elementAt(minterm))[literal])
|| ((int[]) implicants.elementAt(implicant))[literal] == 2)) {
/l implicant does not imply minterm
impliesMinterm = false;

144

break; // We know the minterm is not implied: get out of the comparison.

}
}

checkMap[minterm][implicant] = impliesMinterm; // put the check (or no check) into checkMap

}

Vector essentialPrimes = new Vector(); // essential primes: to be returned

boolean[] mintermsDone = new boolean[minterms.size()]; // what minterms are "circled"
/I initialize mintermsDone to all false

for (int initMintermsDone = 0O; initMintermsDone < minterms.size(); initMintermsDone++) {

mintermsDone[initMintermsDone] = false;

/I Checking columns and taking rows (implicants):
while (!allTermsDone(mintermsDone)) {

// do columns in order of how many checks they have (least first)
/I find the col. with the least number of checks:
int minChecksCol = 0;
int minChecksVal = implicants.size() + 1;
for (int col = 0; col < minterms.size(); col++) {

int numChecksInCol = 0;

if (!ImintermsDone[col]) { // don’t check any minterms that are circled

for (int row = 0; row < implicants.size(); row++) {
if (checkMap]col][row]) {

/I there is a check. Add 1 to the number of checks in col.

numChecksInCol++;
}
}
if (numChecksInCol < minChecksVal) {
/I There are fewer checks in this column than the current choice.
minChecksVal = numChecksInCol;
minChecksCol = col;

}
}

/I find row with most additional checks from col minChecksCol

A5

Qv

}

else {

int maxChecksRow = 0;
int maxChecksVal = 0;
for (int row = 0; row < implicants.size(); row++) {
if (checkMap[minChecksCol][row]) {
/I There is a check in this row that is in minChecksCol.
/I Count the number of additional checks in this row.
int checksInRow = 0;
for (int col = 0; col < minterms.size(); col++) {
if (checkMap]col][row] && 'mintermsDone[col]) {
/I There is a check, and its minterm is not circled.
checksInRow++;
}
}
if (checksIinRow > maxChecksVal) {
/I There are more additional checks in this row than the current choice.
maxChecksVal = checksInRow;
maxChecksRow = row;

}
}
/I Circle all minterms with checks in maxChecksRow:
for (int col = 0; col < minterms.size(); col++) {

if (checkMap]col][maxChecksRow]) {

mintermsDone[col] = true;

}
}
/I The implicant at maxChecksRow is essential. Take it:
essentialPrimes.addElement(new intfNUMINPUTS));
System.arraycopy((int[]) implicants.elementAt(maxChecksRow), 0,

(int[]) essentialPrimes.elementAt(essentialPrimes.size() - 1), 0, NUMINPUTS);
}

return essentialPrimes; // done. Return essentialPrimes.

/I There is only one implicant. No elimination is possible.

A6

ov

return implicants;

}

/*

* allTermsDone checks to see if all the minterms in QM2 are done.

*
boolean allTermsDone(boolean[] mintermsDoneArray) {
for (intix = 0; ix < NUMTERMS; ix++) {
if (mintermsDoneArray[ix] == false) {
return false;
}
}

return true;

A7

LY

Appendix B
Java Source Code of Simplify

// global variables:
int NUMINPUTS; // the number of inputs
int NUMTERMS; // the number of minterms

/*

* The main meathod for simplify. Simplify breaks up
* a function f recursively to simplify it.

* f is a vector of implicants. It is a representation

* of a function. Each implicant (or “cube”) is an

* array of literals.

*/

Vector simplify(Vector f) {

if (unate(f)) {
I fis unate. Use unate_simplify:
return unate_simplify(f);

else {
/l fis binate.
int j = binate_select(f); // j is the splitting variable
if (j==-1){// check the error flag
/l some error occurred in binate_select. f is unate? use

/l unate_simplify to see if any containment removal can occur.

return unate_simplify(f);

else {

/I no error occurred. Use Shannon’s Expansion Theorem:

Vector f_prime = merge(simplify(cofactor(f,j,true)),
simplify(cofactor(f,j,false)), j);

/I double check to make sure f actually was simplified:

if (f.size() > f_prime.size()) {
return f_prime;

}

else {
return f;

}

}

/*
* unate_simplify removes any implicant in f that
* is contained by another implicant in f.
*/
Vector unate_simplify(Vector f) {
for (int cube = 0; cube < f.size() - 1; cube++) {
for (int compCube = f.size() - 1; compCube > cube; compCube--) {
if (contains((int[]) f.elementAt(cube), (int[])
f.elementAt(compCube))) {

Al

/I compCube is contained in cube.
f.removeElementAt(compCube);

}

return f;

}

/*
* ¢ and d are cubes (implicants). contains
* returns true if ¢ contains (covers) d and
* false if ¢ does not contain d.
*/
boolean contains(int[] ¢, int[] d) {
boolean toReturn = true; // init toReturn to true.
for (int test = 0; test < NUMINPUTS; test++) {
if ((c[test] != d[test]) && (c[test] '=2)) {
/l literals disagree and the literal in ¢ is not 2.
/I ¢ does not contain d.
toReturn = false;
break;
}
}
return toReturn;

}

/*
* binate_select returns the index of the most binate
* column in f. The most binate column is the one with
* the greatest number of ones and zeros.
*/
int binate_select(Vector f) {
/I finds the most binate variable (column) for splitting

int[] p_zero = new intfNUMINPUTS]; // array holding the number of Os in each col
int[] p_one = new intfINUMINPUTS]; // array holding the number of 1s in each col

/l count the number of Os and 1s in each row:
for (intj =0; j < NUMINPUTS; j++) { // j is index for columns
for (inti=0; i< f.size(); i++) {// iis index for rows
if (((int]]) f.elementAt(i))[j]==0) {

p_zero[j]++;
}
else {
if (((int]]) f.elementAt(i))[j]==1){
p_one[j]++;
}
}

}
}
boolean unate = true; // make sure f is not unate. Init value of unate is true.
Hashtable J = new Hashtable(); // the set of binate columns.
for (intj = 0; j < NUMINPUTS; j++) {
if ((p_zero[j] > 0) && (p_one[j] > 0)) {
/ there are both Os and 1s in this column.

A2

unate = false;
J.put(new Integer(j), new Integer()));
}
}
if (unate) {
return -1;
}
else {
int splittingd = -1; // the choice of the most binate column.
int maxVal = 0; // the maximum value of the sum of 1s and Os in a column
for (intj = 0; j < NUMINPUTS; j++) {
if (p_zero[j] + p_one[j] > maxVal && J.containsKey(new Integer(j))){
/I There are more 1s and Os in this column than the chosen col.
/I Also, this column is binate. It becomes the new chosen col.
maxVal = p_zero[j] + p_one[j];
splittingd = j;
}
}
return splittingJ;
}
}
/*

* merge merges the two functions (sets of implicants) H1 and HO.
* H1 is the “subfunction” gotten from using Shannon’s Expansion
* Theorem with the splitting variable splittingVar = 1.
* HO is the “subfunction” gotten from using Shannon’s Expansion
* Theorem with the splitting variable splittingVar = 0.
* merge ANDs the splitting var with H1 and HO, and then ORs the
* result to complete Shannon’s Expansion Theorem. While it is
* doing this, it checks to see if it can create a more simple
* result by checking for identical implicants and implicants
* that contain other implicants between H1 and HO.
*/
Vector merge(Vector H1, Vector HO, int splittingVar) {
/I H2 is the set of implicants that are not ANDed with the splitting variable
Vector H2 = new Vector();
/I check to see if any implicants in H1 and HO are identical:
for (inti=HO0.size() - 1;i>=0;i--){
for (intl=HLl.size()-1;1>=0;1--){
boolean equal = true; // are the implicants in H1 and HO identical?
/I compare by checking each literal:
for (int compare = 0; compare < NUMINPUTS; compare++) {
if (((int[]) HO.elementAt(i))[compare] != ((int[])
H1.elementAt(l))[compare]) {
/l the implicants are not identical.
equal = false;
break; // get out of this comparison.
}
}
if (equal) {
/ they are identical, and thus do not have to be
/l ANDed with the splitting variable.

A3

H2.addElement(((int[]) HO.elementAt(i)).clone());
HO.removeElementAt(i);
H1.removeElementAt(l);

break;

}
}

/I check to see if any implicants in H1 contain

/I any implicants in HO and vice versa.

for (inti =HO0.size() - 1;i>=0;i--){

for (intl=HLl.size()-1;1>=0;1--){
if (contains((int[]) HO.elementAt(i), (int[]) H1.elementAt(l))) {

/I The implicant in HO contains the one in H1.
/I The one in H1 does not have to be ANDed with splittingVar.
H2.addElement(H1.elementAt(l));
H1.removeElementAt(l);

else {

if (contains((int[]) H1.elementAt(l),
(int[]) HO.elementAt(i))) {
/I The implicant in H1 contains the one in HO.
/I The one in HO does not have to be ANDed
[l with splittingVar.
H2.addElement(HO.elementAt(i));
HO.removeElementAt(i);
break;

try {
Vector H = new Vector(); // H is the final function to be returned.

/I AND all implicants in HO with the splitting var = 0:
HO = intersect(HO, splittingVar, false);
[/l Put everything in HO into H:
for (inti=0; i< HO.size(); i++) {
H.addElement(((int[]) HO.elementAt(i)).clone());
}
/I And all implicants in H1 with the splitting var = 1:
H1 = intersect(H1, splittingVar, true);
[/l Put everything in H1 into H:
for (int1=0; | < Hl.size(); l++){
H.addElement(((int[]) H1.elementAt(l)).clone());
}
[/l Put everything in H2 into H:
for (intt=0;t < H2.size(); t++)
H.addElement(H2.elementAt(t));
return H;
} catch (CloneNotSupportedException ex) {
/I this will never happen, but he compiler wants it.
System.out.printin(ex);
return null;

A4

/*

* intersect ANDs a function f with a splitting variable.

* [t ANDs each implicant in f with the “implicant” that is

* all 2s except for the index of splittingVar, which is

* 0 when value is false and 1 when value is true.

* Effectively, this makes a function whose value in

* the splittingVar column is 1 or O (depending on what

* value is). The implicants in this function come from

* the implicants in f that do not “disagree” with the

* splitting value: that is, the ones that do not have a

* 0 in the splittingVar literal when splittingVar is 1,

* and vice versa.

*

Vector intersect(Vector f, int splittingVar, boolean value) {

Vector intersection = (Vector) f.clone(); // intersection will be returned.
/I remove the implicants from intersection that “disagree”
[/ with the splitting variable:
int notVal = 0, loweredVal = 1; // default (init): value is true
/* notVal is the opposite value of value. It is 0 when value is true
* and 1 when value is false.
* loweredVal is the value of value. It is what the 2s in the
* splittingVar column of intersection will be changed to.

*/

if (lvalue) { // change notVal and loweredVal if value is false
notval = 1;
loweredVal = 0;

}

for (int cube = intersection.size() - 1; cube >= 0; cube--) {
if (((int[]) intersection.elementAt(cube))[splittingVar] == 2) {
/I AND this cube (implicant) by changing the 2 to loweredVal:
((int]]) intersection.elementAt(cube))[splittingVar] = loweredVal;

}
else {
if ((int[]) intersection.elementAt(cube))[splittingVar] == notVal) {
I there is a “disagreement:” remove this cube (implicant)
intersection.removeElementAt(cube);
}
}
}
return intersection;
}
/*

* cofactor returns the cofactor of f with respect
* to the splitting variable j, whose value is value.
* value is true for uncomplemented and false for
* complemented.
*/
Vector cofactor(Vector f, int j, boolean value) {
Vector result = new Vector(); // result is the cofactor; it will be returned.

try {

A5

A6

for (inti=0; i< f.size(); i++) {

Il i is the index of implicants (rows)

if (((((int]]) f.elementAt(i))[j] != 0) && value)
[| ((((int]])) f.elementAt(i))[j] '= 1) && !value)) {
/I Case 2 of the cofactor operation
int[] newCube = (int[]) ((int[]) f.elementAt(i)).clone();
newCubel[j] = 2;
result.addElement(newCube);

}

}

catch (CloneNotSupportedException ex) {
/I this will never happen, but the compiler wants it.
System.out.printin(ex);

return null;
}
return result;
}
/*
* unate checks to see if a function f is unate
*/

boolean unate(Vector f) {
boolean isUnate = true; // initialize isUnate, which will be returned.
for (int col = 0; (col < NUMINPUTS) && isUnate; col++) {
/I check each column to make sure it does not contain both 1s and Os:
int somethingInCol = 2; // if a 1 or 0 is found, it's put here.
for (int row = 0; row < f.size(); row++) {
if ((((int]]) f.elementAt(row))[col] != somethingInCol)
&& (((int[]) f.elementAt(row))[col] '=2)) {
if (somethingInCol == 2) {
/I only 2s were seen before in this column.
somethingInCol = ((int[]) f.elementAt(row))[col];

}

else {
// both 1s and 2s are in this column.
isUnate = false;
break;

}

}
}

return isUnate;

